Лабораторная работа № 1 Предел последовательности: определение, свойства

Необходимые понятия и теоремы: определение числовой последовательности, ограниченные и неограниченные последовательности, монотонные последовательности, определение предела последовательности, сходящиеся и расходящиеся последовательности, свойства сходящихся последовательностей.

Литература: [1] с. 81 - 87, [4] с. 87 - 111.

1 Напишите пять первых членов последовательности x_n :

№	x_n	N_{2}	x_n	N_{2}	x_n	N_{2}	x_n
1.1	$\frac{1}{2n+1}$	1.6	$(-1)^{\frac{n(n+1)}{2}}n$	1.11	$(-1)^{\frac{n(n+1)}{2}}2^n$	1.16	$\left(1+\frac{1}{3n}\right)^{2n}$
1.2	$\frac{n+2}{n^3+1}$	1.7	$\left(1+\frac{1}{n}\right)^n$	1.12	$\frac{5^n + (-3)^n}{n^2}$	1.17	$\frac{\cos n}{n+1}$
1.3	$\frac{n}{2^{n+1}}$	1.8	$(-1)^n \frac{1}{n}$	1.13	$\frac{5^{n+1} + (-3)^n}{2^n}$	1.18	$((-1)^n - 1)n$
1.4	$(-1)^n n$	1.9	$\cos n$	1.14	sin n	1.19	$(-1)^n + 6n$
1.5	$\frac{n+2}{n+3}$	1.10	$\frac{\ln n}{2^n}$	1.15	$\frac{\sin n}{n^2}$	1.20	$(-1)^{n-1} \frac{n+1}{n^2}$

2 Найти формулу для общего члена последовательности, элементами которой являются:

2.1	числа { 8; 14; 20; 26; 32;}	2.11	числа { 1/2; 1/2; 3/8; 1/4; 5/32;}
2.2	корни уравнения $\cos \pi x = 0$	2.12	корни уравнения $\cos(\pi x/2) = 1$
2.3	числа { 1; 3; 1; 3; 1; }	2.13	числа {2; 3/2; 4/3; 5/4; 6/5;}
2.4	корни уравнения $\sin \pi x = 0$	2.14	корни уравнения $\sin(\pi x/2) = 0$
2.5	числа { 5; 7; 11; 19; 35;}	2.15	числа {-0,5;1,5;-4,5;13,5;}
2.6	корни уравнения $\cos \pi x = 1$	2.16	корни уравнения $\cos(\pi x/2) = 0$
2.7	числа { 0,3; 0,33; 0,333; }	2.17	числа $\{-2; -1/2; -4/3; -3/4;\}$
2.8	корни уравнения $\sin \pi x = 1$	2.18	корни уравнения $\sin(\pi x/2) = 1$
2.9	числа { 1; 2; 6; 24; 120;}	2.19	числа {-1/10; 1/100; -1/1000;}
2.10	корни уравнения $\cos \pi x = -1$	2.20	корни уравнения $\sin \pi x = -1$

3 Найти формулу общего члена последовательности, заданной рекуррентным способом:

No	x_1	x_{n+1}	No	x_1	x_{n+1}
3.1	1	$x_n + 2^n$	3.11	1/3	$1/(1+x_n)$
3.2	0	$(x_n+1)/(n+1)$	3.12	1	$3 \cdot x_n + 5 \cdot 2^n$
3.3	2	$x_n + 3 \cdot 2^n$	3.13	2	$x_n/(4+x_n)$
3.4	1	$(n+1)(x_n+1)$	3.14	1	$x_n/(1+x_n)$
3.5	1/2	$1/(2-x_n)$	3.15	3	$(n+1)(x_n+1)$
3.6	1	$3x_n + 2^n$	3.16	0	$x_n + 7 \cdot 2^n$
3.7	3	$x_n/(1+x_n)$	3.17	1	$x_n/(5+x_n)$
3.8	1/2	$2/(3-x_n)$	3.18	2	$4x_n + 2^n$
3.9	1	$2 \cdot x_n + 3 \cdot 2^n$	3.19	3	$x_n/(6+x_n)$
3.10	5	$x_n/(5+x_n)$	3.20	1	$x_n + 5 \cdot 2^n$

4 Выяснить, является ли последовательность a_n ограниченной снизу, ограниченной сверху, ограниченной, монотонной.

or parm reim	on chepay, or	panni-timon,	монотонной	·	
№	a_n	$\mathcal{N}_{\underline{\circ}}$	a_n	$N_{\overline{0}}$	a_n
4.1	$\frac{1}{n+1}$	4.8	$\frac{\arcsin(1/n)}{n}$	4.15	$\frac{\cos n}{n^2}$
4.2	$\frac{(-1)^n}{n^2}$	4.9	$\sin\frac{1}{n^2}$	4.16	$\frac{2^n + (-1)^n}{n}$
4.3	2^n	4.10	3^{-n}	4.17	$\sqrt{n+2}$
4.4	$\frac{2^n}{n!}$	4.11	$\frac{n+(-1)^n}{3n-1}$	4.18	$\frac{\operatorname{arctg} n}{n}$
4.5	$\lg(1+n)$	4.12	$n^2 - 2n + 4$	4.19	$n^2 - (-1)^n$
4.6	$\frac{n+(-1)^n}{n}$	4.13	$\frac{\left(-1\right)^{n}}{n!}$	4.20	$(-1)^{n-1} \frac{n+1}{n^2}$
4.7	$(-1)^n n$	4.14	$(-1)^n n + n$	4.21	$\ln\left(1+\frac{1}{n}\right)$

5 Пользуясь определением предела последовательности, доказать, что $\lim_{n\to\infty}a_n=a$. Указать для $\varepsilon=2;0,01$ числа N_ε .

\mathcal{N}_{0}	a_n	а	№	a_n	а
1	2	3	4	5	6
5.1	(n+1)/(n+4)	1	5.11	(3n+1)/(n+6)	3

1	2	3	4	5	6
5.2	$\frac{2n-2}{n+4}$	2	5.12	$\frac{3n + \sin 3n}{n - 6}$	3
5.3	$\frac{n + \cos n}{n + 3}$	1	5.13	$\frac{n-1}{n+5}$	1
5.4	$\frac{2n+1}{n-4}$	2	5.14	$\frac{4n+1}{2n+1}$	2
5.5	$\frac{n-3}{2n+1}$	$\frac{1}{2}$	5.15	$\frac{n+\sin n}{2n+4}$	$\frac{1}{2}$
5.6	$\frac{\cos n}{n-3}$	0	5.16	$\frac{2n-3}{2n+5}$	1
5.7	$\frac{2n+6}{2n+7}$	1	5.17	$\frac{2n-3}{n+4}$	2
5.8	$\frac{2n-1}{n+4}$	2	5.18	$\frac{2n+1}{n-6}$	2
5.9	$\frac{n-1}{2n+4}$	$\frac{1}{2}$	5.19	$\frac{3n + \cos n!}{3n + 5}$	1
5.10	$\frac{n+1}{n+4}$	1	5.20	$\frac{n}{n+1}$	1

6 Пользуясь отрицанием определения предела последовательности, доказать, что $\lim_{n\to\infty} a_n \neq a$.

No	a_n	а	№	a_n	а
1	2	3	4	5	6
6.1	$\frac{3n+1}{n^2+6}$	1	6.11	$\frac{n+1}{n+4}$	3
6.2	$\frac{3n^2}{n-6}$	2	6.12	$\frac{2n-2}{n+4}$	3
6.3	$\frac{n-1}{n^2+5}$	1	6.13	$\frac{n^2}{n^3+3}$	1
6.4	$\frac{n+1}{2n+1}$	2	6.14	$\frac{2n+1}{6n-4}$	2
6.5	$\frac{n^2}{2n+4}$	$\frac{1}{2}$	6.15	$\frac{n-3}{2n^2+1}$	$\frac{1}{2}$
6.6	$\frac{2n-3}{2n+5}$	0	6.16	$\frac{n^2}{n-3}$	1
6.7	$\frac{2n-3}{n+4}$	1	6.17	$\frac{2n+6}{2n+7}$	2

1	2	3	4	5	6
6.8	$\frac{n+1}{n-6}$	2	6.18	$\frac{n-1}{n+4}$	2
6.9	$\frac{3n}{3n+5}$	$\frac{1}{2}$	6.19	$\frac{n-1}{2n+4}$	1
6.10	$\frac{n+3}{2n+4}$	1	6.20	$\frac{2n+1}{3n-1}$	$\frac{1}{2}$

7 Вычислить пределы $\lim_{n \to \infty} a_n$:

No		a_n	
145	A	Б	В
1	2	3	4
7.1	$\frac{n^2 - n + 3}{n^3 + n^2 - 5}$	$\frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$	$\frac{(2n+1)!+(2n+2)!}{(2n+1)!+(2n+3)!}$
7.2	$\frac{3n^2-5}{6n^2+n-2}$	$\frac{3+0.5^{n+1}}{0.3^n+5}$	$\frac{(3n-1)!+(3n+1)!}{(3n)!(n-1)}$
7.3	$\frac{n^3 + n + 2}{n^3 + n - 1}$	$\frac{(-1)^n \cdot 6^n - 5^{n+1}}{5^n - (-1)^{n+1} \cdot 6^{n+1}}$	$\frac{(n+1)!+(n+2)!}{(n+3)!+(n+1)!}$
7.4	$\frac{n^3 - 4n^2 + n - 1}{2n^3 + n^2 - 3}$	$\frac{5^{n+1} + 3^{n+1}}{5^n + 3^n}$	$\frac{(3n-1)!+(3n+1)!}{(3n)!-(3n+1)!}$
7.5	$\frac{n^2 - 2n + 4}{n^2 - n + 3}$	$\frac{2+0,7^{n+1}}{0,5^n+1}$	$\frac{(2n+2)!-(2n+1)!}{(2n+3)!+(2n+1)!}$
7.6	$\frac{4n^2 - 3n + 1}{n^2 + n - 4}$	$\frac{(-1)^n \cdot 3^n - 5^{n+1}}{5^n - (-1)^{n+1} \cdot 3^{n+1}}$	$\frac{(5n-1)!+(5n)!}{(5n+2)!+2(5n)!}$
7.7	$\frac{n^3+1}{n^3+n-4}$	$\frac{4^{n+1} + 7^{n+1}}{4^n - 7^n}$	$\frac{n! + (n+2)!}{n!(3n^2 + 5)}$
7.8	$\frac{2n^3 - n + 3}{n^3 + n^2 - 1}$	$\frac{4+0,7^{n+1}}{0,5^n+5}$	$\frac{(2n-1)!+(2n+1)!}{(6n^2+5n)(2n-1)!}$
7.9	$\frac{2n^2 + n + 4}{n^2 + n + 1}$	$\frac{(-1)^n \cdot 5^n - 3^{n+1}}{3^n - (-1)^{n+1} \cdot 5^{n+1}}$	$\frac{(4n+3)!+(4n+1)!}{(4n)!+2\cdot(4n+3)!}$
7.10	$\frac{4n^3 - 2n + 3}{2n^3 + n^2 + 5n + 1}$	$\frac{2 \cdot 4^{n+1} + 3^{n+1}}{2 \cdot 4^n - 3^n}$	$\frac{(2n+1)!-(2n+2)!}{(2n+3)!+(2n+5)!}$
7.11	$\frac{4n^3 - 2n + 7}{2n^3 + n^2 - 3}$	$\frac{4 \cdot 0, 6^{n+1}}{0, 5^n + 1}$	$\frac{(n+1)!+(n+2)!}{(n+1)!(3n+5)}$

1	2	3	4
7.12	$n^2 - 3n + 4$	$(-1)^n \cdot 5^{n+1} - 3^{n+2}$	(7n+1)!+(7n+2)!
7.12	$2n^2 + n - 3$	$3^n - (-1)^n \cdot 5^n$	(7n+3)!-3(7n+4)!
7.13	$5n^2 - 2n + 1$	$4^{n+1} + 3 \cdot 7^{n+1}$	(4n-1)!-(4n+1)!
7.13	$n^2 + 4n - 8$	$2 \cdot 4^n - 7^n$	(4n)!+(4n+1)!
7.14	$3n^2 + 7n + 3$	$3+5\cdot 0,7^{n+1}$	(3n-1)!-(3n+1)!
7.14	$n^3 + 5$	$0.5^{n} - 7$	(3n)!(n+2)
7.15	$5n^2 + n + 7$	$(-1)^{n+1} \cdot 9^n - 3^{n+1}$	(5n-1)!+(5n+1)!
7.13	$n^2 + 2n - 3$	$3^n - (-1)^{n+1} \cdot 9^{n+1}$	$(6n^2 + n - 7)(5n - 1)!$
7.16	$n^3 + 5n - 1$	$11^{n+1} + 9^n$	$2 \cdot (4n)! + (4n+1)!$
7.10	$2n^3 + n^2 - 5$	$11^n - 9^n$	$(4n)!+2\cdot(4n+1)!$
7.17	$n^2 - 3$	$0.3^n + 0.7^{n+2}$	(8n+1)!-(8n+3)!
/.1/	$n^2 + 4n - 2$	$0.5^n + 5$	(8n+5)!+6(8n+1)!
7.18	$n^2 - n + 3$	$100 \cdot 5^n - 3^{n+1}$	3n! + (n+1)!
7.10	$n^3 + n^2 - 5$	$3^n - 25 \cdot 5^{n+1}$	$n!(n^2+5)$
7.19	$4n^2 + 3n - 9$	$3 \cdot 5^{n+1} + 8^{n+1}$	9n! + (n+1)!
1.17	$2n^2 + n - 4$	5^n-8^n	n!(3n-1)
7.20	8n-5	$11+0.9^{n+1}$	(n+1)!+(n+2)!
1.20	$\overline{2n+3}$	$0.5^{n} + 5$	3(n+3)!+(n+1)!

- **8** Формулируя определение предела последовательности, студент вместо
- **8.1** «Выполняется неравенство $|x_n a| \le \varepsilon$ » сказал: «Выполняется неравенство $x_n a \le \varepsilon$ ». Доказать, что при таком определении число 5 является пределом последовательности 1, 1, ..., 1...
- **8.2** «Найдется такое N_{ε} , что при $n \ge N_{\varepsilon}$ выполняется неравенство $|x_n a| \le \varepsilon$ » сказал: «Найдется такое N_{ε} , что выполняется неравенство $|x_n a| \le \varepsilon$ ». Приведите пример не сходящейся последовательности, которая имеет предел при таком определении?
- **8.3** «Найдется такое N_{ε} » сказал: «При всех N_{ε} ». Какие последовательности будут иметь предел при таком определении?
- **8.4** «Для любого $\varepsilon > 0$ » сказал: «Хотя бы для одного $\varepsilon > 0$ ». Доказать, что при таком определении последовательность 2, 2, 2, ... имеет предел 7.
- **8.5** «Для любого $\varepsilon > 0$ » сказал: «Для любого ε ». Существуют ли последовательности, обладающие пределом при таком определении?

- **8.6** «Выполняется неравенство $|x_n a| \le \varepsilon$ » сказал: «Выполняется неравенство $x_n a \le \varepsilon$ ». Доказать, что при таком определении число 6 является пределом последовательности 3, 3, ..., 3....
- **8.7** «Для любого $n \ge N_{\varepsilon}$ » сказал: «Для любого n». Какие последовательности будут иметь предел при таком определении?
- **8.8** «Выполняется неравенство $|x_n a| \le \varepsilon$ » сказал: «Выполняется неравенство $|x_n a| > \varepsilon$ ». Существуют ли последовательности, обладающие пределом при таком определении? Если возможно, привести пример.
- **8.9** «Для любого $\varepsilon > 0$ » сказал: «Хотя бы для одного $\varepsilon > 0$ ». Доказать, что при таком определении последовательность $(-1)^n$ имеет предел 0.
- **8.10** «Выполняется неравенство $|x_n a| \le \varepsilon$ » сказал: «Выполняется неравенство $|x_n a| < \varepsilon$ ». Какие последовательности будут иметь предел при таком определении?
- **8.11** «Выполняется неравенство $|x_n a| \le \varepsilon$ » сказал: «Выполняется неравенство $x_n a \le \varepsilon$ ». Доказать, что при таком определении число 7 является пределом последовательности 4, 4, ..., 4....
- **8.12** «Для любого $\varepsilon > 0$ » сказал: «Хотя бы для одного $\varepsilon > 0$ ». Доказать, что при таком определении последовательность 4, 4, 4, ... имеет предел 10.
- **8.13** «Выполняется неравенство $|x_n a| \le \varepsilon$ » сказал: «Выполняется неравенство $x_n a \le \varepsilon$ ». Доказать, что при таком определении число 7 является пределом последовательности $\frac{1}{n}$.
- **8.14** «Для любого $n \ge N_{\varepsilon}$ » сказал: «Для любого $n > N_{\varepsilon}$ ». Какие последовательности будут иметь предел при таком определении?
- **8.15** «Для любого $\varepsilon > 0$ » сказал: «Хотя бы для одного $\varepsilon > 0$ ». Доказать, что при таком определении последовательность $(-2)^n$ имеет предел 0.
- **8.16** «Для любого $\varepsilon > 0$ » сказал: «Для любого $\varepsilon \ge 0$ ». Какие последовательности не будут иметь предел при таком определении? Привести пример.
- **8.17** «Выполняется неравенство $|x_n a| \le \varepsilon$ » сказал: «Выполняется неравенство $x_n a \le \varepsilon$ ». Доказать, что при таком определении число 8 является пределом последовательности 5, 5, ..., 5....
- **8.18** «Для любого $\varepsilon > 0$ » сказал: «Хотя бы для одного $\varepsilon > 0$ ». Доказать, что при таком определении последовательность $(-1)^n + 1$ имеет предел 0.
- **8.19** «Выполняется неравенство $|x_n a| \le \varepsilon$ » сказал: «Выполняется неравенство $x_n a \le \varepsilon$ ». Доказать, что при таком определении число 10 является пределом последовательности 7, 7, ..., 7....

8.20 «Для любого $\varepsilon > 0$ » сказал: «Хотя бы для одного $\varepsilon > 0$ ». Доказать, что при таком определении последовательность $(-1)^n - 1$ имеет предел 0.

Решение типовых примеров

1.20 Напишите пять первых членов последовательности

$$x_n = (-1)^{n-1} \frac{n+1}{n^2}$$

Pewehue. Для последовательности $x_n = (-1)^{n-1} \frac{n+1}{n^2}$ имеем $x_1 = 2$,

$$x_2 = -\frac{3}{4}$$
, $x_3 = \frac{4}{9}$, $x_4 = -\frac{5}{16}$, $x_5 = \frac{6}{25}$.

2.20 Найти формулу для общего члена последовательности, элементами которой являются корни уравнения $\sin \pi x = -1$.

Pemenue. Решая уравнение $\sin \pi x = -1$, получаем

$$\pi x = -\pi/2 + 2\pi k, k \in \mathbb{Z}.$$

Отсюда $x_n = -1/2 + 2n, n \in \mathbb{N}$.

3.20 Найти формулу общего члена последовательности, заданной рекуррентным способом: $x_1 = 1$, $x_{n+1} = x_n + 5 \cdot 2^n$.

Pewehue. Подставляя в рекуррентную формулу вместо x_n его выражение через x_{n-1} , затем вместо x_{n-1} его выражение через x_{n-2} и так далее, получим

$$\begin{aligned} x_{n+1} &= x_n + 5 \cdot 2^n = (x_{n-1} + 5 \cdot 2^{n-1}) + 5 \cdot 2^n = x_{n-1} + 5 \cdot (2^{n-1} + 2^n) = \\ &= (x_{n-2} + 5 \cdot 2^{n-2}) + 5 \cdot (2^{n-1} + 2^n) = x_{n-2} + 5 \cdot (2^{n-2} + 2^{n-1} + 2^n) = \dots \\ &= 1 + 5 \cdot (2 + 2^2 + \dots + 2^{n-1} + 2^n) = 1 + 5 \cdot \frac{2(2^n - 1)}{2 - 1} = 1 + 10 \cdot (2^n - 1). \end{aligned}$$

Таким образом, формула общего члена последовательности имеет вид:

$$x_n = 1 + 10 \cdot (2^{n-1} - 1)$$
.

4.20 Выяснить, является ли последовательность a_n ограниченной снизу, ограниченной сверху, ограниченной, монотонной.

$$a_n = (-1)^{n-1} \frac{n+1}{n^2}$$

Peшение. Поскольку $|a_n| = \left| (-1)^{n-1} \frac{n+1}{n^2} \right| = \frac{n+1}{n^2} \le 2$ для любого $n \in \mathbb{N}$,

то последовательность является ограниченной, а, значит, ограниченной сверху и снизу.

Так как $a_3 > a_4$ и $a_4 < a_5$, видно, что определение монотонности не выполняется. Значит, последовательность $a_n = (-1)^{n-1} \frac{n+1}{n^2}$ не является монотонной.

5.20 Пользуясь определением предела последовательности, доказать, что $\lim_{n\to\infty}\frac{n}{n+1}=1$. Указать для $\varepsilon=2;0,01$ числа N_{ε} .

Решение. Приведем определение предела последовательности:

$$\lim_{n\to\infty} a_n = a \iff \forall \varepsilon > 0 \,\exists \, N_\varepsilon \in \mathbb{N} \, \forall n \geq N_\varepsilon : |a_n - a| \leq \varepsilon \,.$$

Возьмем любое $\varepsilon > 0$. Найдем номер N_{ε} .

Из неравенства
$$\left| \frac{n}{n+1} - 1 \right| \le \varepsilon$$
 получим $\frac{1}{n+1} \le \varepsilon$. Отсюда $n \ge \frac{1}{\varepsilon} - 1$.

Если взять
$$N_{\varepsilon} = \left[\frac{1}{\varepsilon} - 1\right] + 1$$
 (так как при $\varepsilon \ge 1$ получим $\left[\frac{1}{\varepsilon} - 1\right] = 0 \not\in \mathbb{N}$),

то для всех номеров
$$n \ge N_\varepsilon$$
 выполняется неравенство $\left| \frac{n}{n+1} - 1 \right| \le \varepsilon$.

Например, при $\varepsilon = 0.01$ последнее неравенство справедливо для членов последовательности с номерами 99, 100, ..., а при $\varepsilon = 2$ неравенство верно $\forall n \in \mathbb{N}$.

6.20 Пользуясь отрицанием определения предела последовательности, доказать, что $\lim_{n\to\infty} \frac{2n+1}{3n-1} \neq \frac{1}{2}$.

Решение. Построим отрицание определения предела последовательности:

$$\lim_{n\to\infty} a_n \neq a \iff \exists \varepsilon > 0 \ \forall \ N \in \mathbb{N} \ \exists n \geq N : |a_n - a| > \varepsilon$$

Оценим $\left| \frac{2n+1}{3n-1} - \frac{1}{2} \right|$. Будем иметь:

$$\left| \frac{2n+1}{3n-1} - \frac{1}{2} \right| = \left| \frac{n+3}{2 \cdot (3n-1)} \right| = \frac{n+3}{2 \cdot (3n-1)} > \frac{n+3}{6n} = \frac{1}{6} + \frac{1}{2n} > \frac{1}{6}$$
, для $\forall n \in \mathbb{N}$.

Следовательно, при $\varepsilon = \frac{1}{6}$ имеем $\left| \frac{2n+1}{3n-1} - \frac{1}{2} \right| > \varepsilon$ $\forall n \in \mathbb{N}$. Это означает,

что число 1/2 не является пределом данной последовательности.

7.20 Вычислить пределы:

A)
$$\lim_{n\to\infty} \frac{8n-5}{2n+3}$$
; **b**) $\lim_{n\to\infty} \frac{11+0.9^{n+1}}{0.5^n+5}$; **b**) $\lim_{n\to\infty} \frac{(n+1)!+(n+2)!}{3\cdot(n+3)!}$.

Решение.

А) имеем:

$$\lim_{n \to \infty} \frac{8n - 5}{2n + 3} = \begin{bmatrix} \text{разделим} \\ \text{числитель} \\ \text{и знаменатель} \\ \text{на n} \end{bmatrix} = \lim_{n \to \infty} \frac{8 - \frac{5}{n}}{2 + \frac{3}{n}} = \begin{bmatrix} \text{по свойствам} \\ \text{пределов} \end{bmatrix} = \frac{\lim_{n \to \infty} \left(8 - \frac{5}{n}\right)}{\lim_{n \to \infty} \left(2 + \frac{3}{n}\right)} = \begin{bmatrix} \text{по свойствам} \\ \text{пределов} \end{bmatrix} = \frac{\lim_{n \to \infty} 8 - \lim_{n \to \infty} \frac{5}{n}}{\lim_{n \to \infty} 2 + \lim_{n \to \infty} \frac{1}{n}} = \frac{8 - 0}{2 + 0} = \frac{8}{2} = 4;$$

Б) имеем:

$$\lim_{n\to\infty} \frac{11+0.9^{n+1}}{0.5^n+5} = \text{ по свойствам пределов } = \frac{\lim_{n\to\infty} (11+0.9^{n+1})}{\lim_{n\to\infty} (0.5^n+5)} =$$

$$= \text{ по свойствам пределов } = \frac{\lim_{n\to\infty} 11+\lim_{n\to\infty} 0.9^{n+1}}{\lim_{n\to\infty} 0.5^n+\lim_{n\to\infty} 5} = \frac{11+0}{0+5} = \frac{11}{5};$$

В) имеем:

$$\lim_{n \to \infty} \frac{(n+1)! + (n+2)!}{3 \cdot (n+3)!} = \lim_{n \to \infty} \frac{1}{3} \left(\frac{(n+1)!}{(n+3)!} + \frac{(n+2)!}{(n+3)!} \right) =$$

$$= \frac{1}{3} \lim_{n \to \infty} \left(\frac{(n+1)!}{(n+1)!(n+2)(n+3)} + \frac{(n+2)!}{(n+2)!(n+3)} \right) =$$

$$= \frac{1}{3} \lim_{n \to \infty} \left(\frac{1}{(n+2)(n+3)} + \frac{1}{(n+3)} \right) = \frac{1}{3} \lim_{n \to \infty} \frac{1}{(n+2)(n+3)} + \frac{1}{3} \lim_{n \to \infty} \frac{1}{(n+3)} = 0.$$

8.20 «Для любого $\varepsilon > 0$ » — «хотя бы для одного $\varepsilon > 0$ ». Доказать, что при таком определении последовательность $(-1)^n - 1$ имеет предел 0.

Решение. Приведем определение предела последовательности.

$$\lim_{n\to\infty} x_n = a \iff \forall \varepsilon > 0 \,\exists \, N_\varepsilon \in \mathbb{N} \, \forall n \geq N_\varepsilon : |x_n - a| \leq \varepsilon \,.$$

Заметим, что последовательность $(-1)^n-1$ не сходится, так как при $n=2k,\,k\in\mathbb{N}$, имеем $\lim_{n\to\infty}x_n=0$, а при $n=2k+1,\,k\in\mathbb{N}$, $\lim_{n\to\infty}x_n=-2$.

С другой стороны, согласно определению предела последовательности, данному студентом, имеем:

$$\lim_{n\to\infty} x_n = a \iff \exists \varepsilon > 0 \,\exists \, N_\varepsilon \in \mathbb{N} \ \forall n \geq N_\varepsilon : |x_n - a| \leq \varepsilon.$$

Возьмем, например, $\varepsilon = 5$. При $n = 2k, k \in \mathbb{N}$, имеем $\left| (-1)^n - 1 - 0 \right| = 0 < 5$. При $n = 2k + 1, k \in \mathbb{N}$, получим $\left| (-1)^n - 1 - 0 \right| = 2 < 5$. Тогда для $\varepsilon = 5$ и $N_{\varepsilon} = 1$ при $\forall n \geq N_{\varepsilon}$ выполняется неравенство $\left| x_n - 0 \right| \leq \varepsilon$. Следовательно, последовательность $(-1)^n - 1$ имеет предел, равный нулю, при таком определении.

Лабораторная работа № 2 Предел и неравенства

Heoбxoдимые понятия и теоремы: фундаментальная последовательность, критерий Коши, теорема о существовании предела монотонной и ограниченной последовательности, число e, бесконечно малые последовательности, теорема о произведении бесконечно малой последовательности на ограниченную, теоремы о пределах, связанные с неравенствами, частичные пределы, верхний и нижний пределы последовательности.

Литература: [1] с. 90 – 95, 97 – 99, [4] с. 87 – 111, 136.

1 Пользуясь критерием Коши, доказать сходимость или расходимость последовательности x_n :

№	\mathcal{X}_n	$N_{\overline{0}}$	\mathcal{X}_n
1	2	3	4
1.1	$\frac{\sin 1}{2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{2^n}$	1.11	$\frac{\sin 1}{3} + \frac{\sin 2}{3^2} + \ldots + \frac{\sin n}{3^n}$
1.2	$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}}$	1.12	$\frac{2}{3^2} + \frac{3}{4^2} \dots + \frac{n+1}{(n+2)^2}$
1.3	$\frac{\cos 1}{2} + \frac{\cos 2}{2^2} + \ldots + \frac{\cos n}{2^n}$	1.13	$1 + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{n!}$
1.4	$\frac{1}{2^3} + \frac{2^2}{3^3} + \ldots + \frac{n^2}{(n+1)^3}$	1.14	$\frac{1}{2^2} + \frac{2}{3^2} + \ldots + \frac{n}{(n+1)^2}$
1.5	$\frac{\cos 1!}{1 \cdot 2} + \frac{\cos 2!}{2 \cdot 3} + \dots + \frac{\cos n!}{n \cdot (n+1)}$	1.15	$1 - \frac{1}{2^2} + \frac{1}{3^2} - \dots + \frac{(-1)^{n-1}}{n^2}$
1.6	$1 + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} + \ldots + \frac{1}{\sqrt[3]{n}}$	1.16	$\frac{1}{\ln 2} + \frac{1}{\ln 3} + \ldots + \frac{1}{\ln(n+1)}$
1.7	$\frac{\sin 1!}{1 \cdot 2} + \frac{\sin 2!}{2 \cdot 3} + \ldots + \frac{\sin n!}{n \cdot (n+1)}$	1.17	$\arcsin \frac{1}{2} + \arcsin \frac{1}{2^2} + \dots + \arcsin \frac{1}{2^n}$

1	2	3	4
1.8	$\frac{\cos 1!}{5+1} + \frac{\cos 2!}{5^2+1} + \dots + \frac{\cos n!}{5^n+1}$	1.18	$\frac{1}{1\cdot 5} + \frac{1}{5\cdot 9} + \ldots + \frac{1}{(4n-3)(4n+1)}$
1.9	$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$	1.19	$a_0+a_1q+\ldots+a_nq^n$, где $\left a_k\right \!<\!M$, $\left q\right \!<\!1$
1.10	$1 + \frac{1}{\sqrt[4]{2}} + \frac{1}{\sqrt[4]{3}} + \ldots + \frac{1}{\sqrt[4]{n}}$	1.20	$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ \forall k = \overline{1, n}$

2 Пользуясь теоремой о существовании предела монотонной и ограниченной последовательности, доказать сходимость последовательности x_n :

№	\mathcal{X}_n	No	X_n
2.1	$1 + \frac{1}{9} + \frac{1}{9^2} + \dots + \frac{1}{9^n}$	2.11	$\left(1-\frac{1}{3}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{3^n}\right)$
2.2	$\frac{1}{2+1} + \frac{1}{2^2+2} + \dots + \frac{1}{2^n+n}$	2.12	$\underbrace{\sqrt{2+\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}}_{n \ \kappa op he \ddot{u}}$
2.3	$1 + \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 2^2} + \dots + \frac{1}{n \cdot 2^{n-1}}$	2.13	$\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n}$
2.4	$1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n!}$	2.14	$\frac{1}{7+1} + \frac{1}{7^2+2} + \dots + \frac{1}{7^n+n}$
2.5	$\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \ldots + \frac{1}{\sqrt{n^2+n}}$	2.15	$1 + \frac{2}{10} + \frac{2}{10^2} + \dots + \frac{2}{10^n}$
2.6	$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right)\ldots\left(1-\frac{1}{2^n}\right)$	2.16	$\frac{1}{\sqrt[3]{n^3+1}} + \frac{1}{\sqrt[3]{n^3+2}} + \ldots + \frac{1}{\sqrt[3]{n^3+n}}$
2.7	$\underbrace{\sqrt{3+\sqrt{3+\sqrt{3+\ldots+\sqrt{3}}}}}_{n \ корней}$	2.17	$\left(1+\frac{1}{3}\right)\left(1+\frac{1}{9}\right)\left(1+\frac{1}{3^n}\right)$
2.8	$\frac{10}{1} \cdot \frac{11}{3} \cdot \dots \cdot \frac{n+9}{2n-1}$	2.18	$\frac{1}{4+1} + \frac{1}{4^2+2} + \dots + \frac{1}{4^n+n}$
2.9	$1 + \frac{1}{10} + \frac{1}{10^2} + \dots + \frac{1}{10^n}$	2.19	$\underbrace{\sqrt{5+\sqrt{5+\sqrt{5+\ldots+\sqrt{5}}}}}_{n \ \kappa op he \ddot{u}}$
2.10	$\frac{1}{3+1} + \frac{1}{3^2+2} + \dots + \frac{1}{3^n+n}$	2.20	$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{2^n}\right)$

3 Вычислить $\lim_{n\to\infty} x_n$:

	$n \rightarrow \infty$	\mathcal{X}_n	
$N_{\underline{0}}$	A	Б	В
1	2	3	4
3.1	$(\sqrt{2n^2-1}-2n)$	$\left(1+\frac{1}{8n}\right)^{8n+5}$	$\frac{\left(-1\right)^{n}+7}{7n^{3}+2}$
3.2	$(\sqrt{9n^2-5n}-3n)$	$\left(1+\frac{1}{2n}\right)^{2n+7}$	$\frac{\sin n!}{\sqrt[3]{n+1}}$
3.3	$(\sqrt{n^2-4n-5}-n)$	$\left(\frac{n+1}{n}\right)^{n+3}$	$\frac{\ln(5+1/n)}{n^2+1}$
3.4	$(\sqrt{n(n+5)}-n)$	$\left(\frac{3n+1}{3n}\right)^{3n+3}$	$\frac{\arccos 1/n}{n^2 + 4}$
3.5	$(\sqrt{n^2+5}-n)$	$\left(\frac{5n+2}{5n}\right)^{5n/2+1}$	$\frac{\cos n!}{\sqrt{n+4}}$
3.6	$(n+\sqrt[3]{4-n^3})$	$\left(\frac{n+1}{n}\right)^{n+3}$	$\frac{\arctan^2}{2n^2 + n}$
3.7	$(\sqrt{9n^2+4}-3n)$	$\left(\frac{1+11n}{11n}\right)^{11n+1}$	$\frac{\left(-1\right)^{n}+3}{4n^{3}+2}$
3.8	$(\sqrt{n^2-3n}-\sqrt{n^2})$	$\left(\frac{n+6}{n}\right)^{n/6+6}$	$\frac{\arcsin 1/n}{n^2 + 4}$
3.9	$(\sqrt{n^2-8n+5}-n)$	$\left(\frac{3+2n}{2n}\right)^{2n/3+1}$	$\frac{\cos n^2}{2n^2 + n}$
3.10	$(\sqrt{4n^2-1}-2n)$	$\left(\frac{7n+1}{7n}\right)^{7n+7}$	$\frac{\sin n!}{\sqrt{n+1}}$
3.11	$(\sqrt{n^2+4n+8}-n)$	$\left(\frac{4+n}{n}\right)^{n/4+9}$	$\frac{\arctan n!}{3^n + 5}$
3.12	$(\sqrt{2n^2-6}-\sqrt{2n^2-7n})$	$\left(\frac{1+9n}{9n}\right)^{9n+9}$	$\frac{\cos n!}{\sqrt[3]{7n^2-1}}$
3.13	$(\sqrt{n^2+1}-n)$	$\left(\frac{13n+1}{13n}\right)^{13n+13}$	$\frac{\left(-1\right)^{n}+8}{3^{n}+5^{n}}$
3.14	$(\sqrt{4n^2-6}-\sqrt{4n^2-5n})$	$\left(\frac{10n+1}{10n}\right)^{10n+10}$	$\frac{2n\sin 2n}{n^2+1}$

1	2	3	4
3.15	$(\sqrt{n^2+1}-n)$	$\left(\frac{0.1n+1}{0.1n}\right)^{0.1n+5}$	$\frac{(-1)^n \cos n}{7^n + 2 \cdot 5^n}$
3.16	$(\sqrt{16n^2-3n}-4n)$	$\left(\frac{25n+1}{25n}\right)^{25n+1}$	$\frac{(-1)^n + 8}{3^n + 5^n}$
3.17	$(\sqrt{n^2-7n+3}-n)$	$\left(\frac{0,3n+1}{0,3n}\right)^{0,3n+3}$	$\frac{\operatorname{arcctg} n^2}{e^{n+1}}$
3.18	$(\sqrt{9n^2-3}-3n)$	$\left(\frac{2n+9}{2n}\right)^{2n/9+7}$	$\frac{\ln(2+1/n)}{n^2}$
3.19	$(\sqrt{n^2-7n+3}-n)$	$\left(\frac{1+0,2n}{0,2n}\right)^{0,2n+3}$	$\frac{2n\cos n}{n^2+4}$
3.20	$\left(\sqrt{n^2+n}-\sqrt{n}+1\right)$	$\left(\frac{27n+1}{27n}\right)^{27n+1}$	$\frac{\sin n}{\sqrt{n}}$

4 Вычислить $\lim_{n\to\infty} x_n$:

№		\mathcal{X}_n	
140	A	Б	В
1	2	3	4
4.1	$5\sqrt[5]{5n+5}$	$\frac{3^n}{n!}$	$\sqrt[n]{\frac{n^2+4^n}{n+5^n}}$
4.2	$\sqrt[n]{n^2}$	$\frac{1}{0,3^n n!}$	$\frac{\log_5(n^2+1)}{n}$
4.3	$\sqrt[n]{\frac{3n+2}{n+5}}$	$\frac{n}{2^n}$	$\frac{4^n + n^2 \cdot 2^n - 1}{n^4 + (n!)^2}$
4.4	ⁿ √5n	$\left(1+\frac{1}{2n}\right)^{n+3}$	$ \frac{4^{n} + n^{2} \cdot 2^{n} - 1}{n^{4} + (n!)^{2}} $ $ \frac{(-3)^{n^{2} - n}}{(n^{3})!} $
4.5	$n\sqrt[2]{6}$	$\frac{n^{20}}{20^n}$	$\sqrt[3n]{\frac{n^3-2n+3}{n^2+1}}$
4.6	$\sqrt[2n]{2n}$	$\frac{1}{0,8^n n!}$	$\frac{n - \lg n}{\log_2(4^n + 1)}$
4.7	$\sqrt[n]{8^n+3^n}$	$\left(1+\frac{1}{5n}\right)^{n+1}$	$n\sqrt{\frac{10}{n} - \frac{1}{1,2^n}}$

1	2	3	4
4.8	$\sqrt[n]{n+5}$	$\frac{200^n}{n!}$	$\left(\frac{7}{10} + \frac{29}{100} + \ldots + \frac{2^n + 5^n}{10^n}\right)$
4.9	$\sqrt[n]{\frac{5n+1}{n+5}}$	$\left(\frac{1+3n}{3n}\right)^{n-3}$	$n\left(\frac{n+1}{2n-1}\right)^n$
4.10	$\sqrt[n]{2n+4}$	$\frac{100^n}{n!}$	$\sqrt[n]{\frac{1}{2} \cdot \frac{1}{4} \cdot \dots \cdot \frac{1}{2n}}$
4.11	$\sqrt[n]{2^n+5^n}$	$\left(\frac{1+9n}{9n}\right)^{n-1}$	$\frac{10^n + n!}{2^n + (n+1)!}$
4.12	$2n\sqrt{0,5}$	$n^{3}/3^{n}$	$n^{1/\sqrt{n}}$
4.13	$\sqrt[13n]{13n+13}$	$\left(\frac{1+7n}{7n}\right)^{n+2}$	$\left(\frac{3}{1 - \sqrt[n]{8}} - \frac{5}{1 - \sqrt[n]{32}}\right)$
4.14	$n\sqrt[2]{9}$	$\frac{n^2}{5^n}$	$\frac{\ln(n^2 - n + 1)}{\ln(n^{10} + n + 1)}$
4.15	$\sqrt[n^2]{2n^2+8}$	$\frac{n}{5^n}$	$\frac{2^{n/2} + (n+1)!}{n(3^n + n!)}$
4.16	$n\sqrt[3]{5}$	$\frac{(-2)^n}{(n+2)!}$	$\left(n\sqrt[2]{\frac{n-1}{n+1}} + \sqrt[n]{3^n n^3 + 2} \right)$
4.17	$\sqrt[3n]{125}$	$\frac{n^{10}}{10^n}$	$\frac{(2+n)^{100} - n^{100} - 200n^{99}}{n^{98} - 10n^2 + 1}$
4.18	$\sqrt[n]{\frac{n+2}{n+5}}$	$\left(1 + \frac{1}{25n}\right)^{n-25}$	$n^{2} \left(\left(1 + \frac{10}{n} \right)^{20} - \left(1 + \frac{20}{n} \right)^{10} \right)$
4.19	$\sqrt[n]{n^3+3n}$	$\frac{n}{7^n}$	$\frac{\ln(n^3 - n + 1)}{\ln(n^6 + n + 1)}$
4.20	3n/8	$2^n/n!$	$\sqrt{2}\cdot\sqrt[4]{2}\cdot\sqrt[8]{2}\cdot\ldots\cdot\sqrt[2^n]{2}$

5 Для последовательности x_n найти $\overline{\lim}_{n\to\infty} x_n$ и $\underline{\lim}_{n\to\infty} x_n$:

			11 /30
№	\mathcal{X}_n	№	X_n
1	2	3	4
5.1	$\frac{n^2\sin(\pi n/2)+1}{n+1}\cos(\pi n/3)$	5.11	$n\cos(\pi n/2)$

5.2	$\frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2} n^{(-1)^n}$	5.12	$\frac{(-1)^n}{n+1} - \frac{1 + (-1)^n}{2}$
1	2	3	4
5.3	$n^{(-1)^n}$	5.13	$3^{(-1)^n}n$
5.4		5.14	$\frac{n^2\cos(\pi n/2)+3}{n+2}$
5.5	$\cos(\pi n/4) + (-1)^n$	5.15	$\sin(\pi n/4) - (-1)^n$
5.6	$5^{(-1)^{n+1}}$	5.16	$(n+1)^{(-1)^n}$
5.7	$\sin(\pi n/3)$	5.17	$n\sin(\pi n/4)$
5.8	$\frac{(-1)^n(n+1)}{n} + \frac{2 + (-1)^n \cdot 3}{7}$	5.18	$\frac{(-1)^n(1-n^3)}{1+n^3} + \frac{1+(-1)^n}{3}$
5.9	$(2n)^{(-1)^n}$	5.19	$e^{(-1)^n n}$
5.10	$\frac{((-1)^n - 1)n^2 + n + 1}{n}$	5.20	$\frac{(3\cos(\pi n/2)-1)n+1}{n}$

Решение типовых примеров

1.19 Пользуясь критерием Коши, установить сходимость или расходимость последовательности

$$x_n = a_0 + a_1 q + \ldots + a_n q^n$$
, где $|a_k| < M \quad \forall k = \overline{1, n}$, $|q| < 1$.

Pewehue. Согласно критерию Коши, последовательность сходится тогда и только тогда, когда она фундаментальна, то есть

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \ \forall n \geq N_{\varepsilon} \ \forall p \in \mathbb{N} : \left| x_{n+p} - x_n \right| \leq \varepsilon.$$

Возьмем любое $\varepsilon > 0$ и рассмотрим разность

$$\begin{aligned} \left| x_{n} - x_{n+p} \right| &= \left| a_{n+p} q^{n+p} + a_{n+p-1} q^{n+p-1} + \dots + a_{n+1} q^{n+1} \right| \le \\ &\le M \left| q^{n+p} \right| + \dots + M \left| q^{n+1} \right| &= M \left(|q|^{n+1} + \dots + |q|^{n+p} \right) = \\ &= M \frac{\left| q \right|^{n+1} \left(1 - |q|^{p} \right)}{1 - |q|} < M \frac{\left| q \right|^{n+1}}{1 - |q|}. \end{aligned}$$

Найдем теперь t из неравенства $M\frac{|q|^{t+1}}{1-|q|} \le \varepsilon$. Имеем $|q|^{t+1} \le \frac{\varepsilon(1-|q|)}{M}$. Следовательно, $t \ge \log_{|q|} \frac{\varepsilon(1-|q|)}{M} - 1$. Полагая теперь $N_\varepsilon = \left[\log_{|q|} \frac{\varepsilon(1-|q|)}{M}\right]$, получим, что при $\forall n \ge N_\varepsilon$ и $\forall p \in \mathbb{N}$ выполняется неравенство $|x_n - x_{n+p}| \le \varepsilon$.

Таким образом, последовательность x_n является фундаментальной и, согласно критерию Коши, сходится.

1.20 Пользуясь критерием Коши, установить сходимость или расходимость последовательности $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$.

Решение. Покажем, что данная последовательность не сходится. Для этого достаточно показать, что она не удовлетворяет критерию Коши, то есть

$$\exists \varepsilon_0 > 0 \ \forall N \ \exists n \ge N \ \exists p \in \mathbb{N} : \left| x_{n+p} - x_n \right| > \varepsilon_0.$$

В нашем случае

$$\left| x_{n+p} - x_n \right| = \left| \frac{1}{n+p} + \frac{1}{n+p-1} + \dots + \frac{1}{n+1} \right| \ge p \cdot \frac{1}{n+p}.$$

Пусть p=n. Тогда получим $|x_{2n}-x_n|\geq \frac{1}{2}$. Рассмотрим $\varepsilon_0=\frac{1}{4}$. В этом случае $\forall N \ \exists n=p \ , \ p\in \mathbb{N}, \ p\geq N: \ |x_{2n}-x_n|>\varepsilon_0$, т.е. последовательность не является фундаментальной, а значит, и не сходится.

2.20 Пользуясь теоремой о существовании предела монотонной и ограниченной последовательности, доказать сходимость последовательности

$$x_n = \left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{4}\right)...\left(1 + \frac{1}{2^n}\right)$$

Решение. Так как

$$\frac{x_{n+1}}{x_n} = 1 + \frac{1}{2^{n+1}} > 1$$
,

то x_n – возрастает.

Покажем, что последовательность ограничена. Учитывая неравенство $\ln(x+1) \le x$, $x \ge 0$, имеем:

$$\ln x_n = \ln\left(1 + \frac{1}{2}\right) + \ln\left(1 + \frac{1}{4}\right) + \dots + \ln\left(1 + \frac{1}{2^n}\right) <$$

$$< \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} < \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \dots = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} = 1,$$

т.е. $\ln x_n < 1$. Откуда $x_n < e$. Значит, x_n — монотонна и ограничена. Тогда по теореме о сходимости монотонной и ограниченной последовательности x_n сходится.

3.20 Вычислить пределы:

A)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + n} - \sqrt{n + 1} \right)$$
, B) $\lim_{n \to \infty} \left(\frac{27n + 1}{27n} \right)^{27n + 1}$, B). $\lim_{n \to \infty} \frac{\sin n}{\sqrt{n}}$.

Решение.

А) Имеем:

$$\lim_{n\to\infty} \left(\sqrt{n^2 + n} - \sqrt{n^2 + 1} \right) =$$

$$= \begin{bmatrix} \textit{Имеем неопределенность вида} \\ (\infty - \infty). \textit{Умножим и разделим} \\ \textit{на } \sqrt{n^2 + n} + \sqrt{n^2 + 1} \end{bmatrix} = \lim_{n \to \infty} \frac{n \left(1 - \frac{1}{n}\right)}{n \left(\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{1}{n^2}}\right)} = \frac{1}{2}.$$

Б) Так как
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$
, то будем иметь

$$\lim_{n \to \infty} \left(\frac{27n+1}{27n} \right)^{27n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{27n} \right)^{27n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{27n} \right)^{27n} \cdot \lim_{n \to \infty} \left(1 + \frac{1}{27n} \right) = \lim_{n \to \infty} \left(1 + \frac{1}{27n} \right)^{27n} = \begin{bmatrix} \cot \theta & \tan \theta \\ k = 27n \end{bmatrix} = \lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k = e \; .$$

В) Поскольку $-1 \le \sin n \le 1$, $\forall n \in \mathbb{N}$, а последовательность $\frac{1}{\sqrt{n}}$ является бесконечно малой, то произведение $\frac{1}{\sqrt{n}} \cdot \sin n$ также будет бесконечно малой последовательностью, т.е.

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\cdot\sin n=0.$$

4.20 Вычислить пределы:

A)
$$\lim_{n\to\infty} \sqrt[3n]{8}$$
, B) $\lim_{n\to\infty} \frac{2^n}{n!}$, B) $\lim_{n\to\infty} (\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdot \dots \cdot \sqrt[2^n]{2})$.

Решение.

A) Так как $\lim_{n\to\infty} \sqrt[n]{a} = 1$, то будем иметь

$$\lim_{n \to \infty} \sqrt[3n]{8} = \lim_{n \to \infty} \sqrt[3n]{2^3} = \lim_{n \to \infty} \sqrt[n]{2} = 1.$$

Б) Если $k \ge 4$, то $2/k \le 1/2$. Поэтому при $n \ge 4$

$$0 < \frac{2^n}{n!} = \frac{8}{1 \cdot 2 \cdot 3} \cdot \frac{2 \dots 2}{4 \dots n} \le \frac{4}{3} \left(\frac{1}{2}\right)^{n-3} = \frac{32}{3} \left(\frac{1}{2}\right)^n.$$

Так как $\lim_{n\to\infty} \frac{32}{3} \left(\frac{1}{2}\right)^n = 0$, то по теореме о предельном переходе в неравен-

CTBAX $\lim_{n\to\infty}\frac{2^n}{n!}=0$.

В) Так как
$$\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdot \dots \cdot \sqrt[2^n]{2} = 2^{\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}} = 2^{1 - \frac{1}{2^n}} = \frac{2}{2^{\frac{1}{2^n}}}$$
 и при $n > 2$

$$2 = \left(2^{\frac{1}{2^{n}}}\right)^{2^{n}} = \left(1 + \left(2^{\frac{1}{2^{n}}} - 1\right)\right)^{2^{n}} > \left(1 + \left(2^{\frac{1}{2^{n}}} - 1\right)\right)^{n} = \left[(1+b)^{n} = \sum_{k=0}^{n} C_{n}^{k} b^{k}\right] =$$

$$=1+n\left(2^{\frac{1}{2^{n}}}-1\right)+\ldots+\left(2^{\frac{1}{2^{n}}}-1\right)^{n}>n\left(2^{\frac{1}{2^{n}}}-1\right),$$

т.е. $0 < 2^{\frac{1}{2^n}} - 1 < \frac{2}{n}$, то по теореме о предельном переходе в неравенствах $\lim_{n \to \infty} \left(2^{1/2^n} - 1\right) = 0$, то есть $\lim_{n \to \infty} 2^{1/2^n} = 1$. Следовательно,

$$\lim_{n\to\infty} (\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdot \dots \cdot \sqrt[2^n]{2}) = 2.$$

5.20 Для последовательности
$$x_n = \frac{(3\cos(\pi n/2) - 1)n + 1}{n}$$
 найти $\overline{\lim_{n \to \infty}} x_n$ и $\underline{\lim_{n \to \infty}} x_n$.

Решение.

При n=4k имеем $x_n=\frac{2n+1}{n}=2+\frac{1}{n}$, и, значит, $\lim_{k\to\infty}x_{4k}=2$, $2< x_{4k}\le 2+1/4$, причем $x_4=9/4$.

При n=4k+1 или n=4k+3 имеем $x_n=\frac{-n+1}{n}=-1+\frac{1}{n}$, и, значит, $-1< x_n<0$, $\lim_{k\to\infty} x_{4k+1}=\lim_{k\to\infty} x_{4k+3}=-1$.

При n=4k+2 имеем $x_n=\frac{-4n+1}{n}=-4+\frac{1}{n},$ значит, $-4< x_n<0$, $\lim_{k\to\infty} x_{4k+2}=-4\,.$

Таким образом, числа 2,-1,-4 являются частичными пределами данной последовательности. Рассмотренные четыре подпоследовательности $\{x_{4k}\}, \{x_{4k+1}\}, \{x_{4k+2}\}, \{x_{4k+3}\}$ составляют вместе всю данную последовательность. Отсюда следует, что других частичных пределов данная последовательность не имеет.

Очевидно,
$$\lim_{n\to\infty} x_n = 2$$
, $\underline{\lim}_{n\to\infty} x_n - 4$.

Лабораторная работа № 7 Предел функции

Необходимые понятия и теоремы: различные определения предела функции, общие свойства предела функции, предел и неравенства, предел и арифметические операции, предел композиции, критерий Коши существования предела, односторонние пределы, бесконечные пределы, частичные пределы.

1 Для функции $y=f(x),\ x\in D\big(f\big)$, заданных a, A и $\varepsilon=\varepsilon_t$ найти такое δ , чтобы для любых $x\in D\big(f\big)$, удовлетворяющих условию $0<\big|x-a\big|<\delta$, выполнялось неравенство $\big|f(x)-A\big|<\delta$

$N_{\underline{0}}$	f(x)	D(f)	а	A	\mathcal{E}_1	\mathcal{E}_2
1	2	3	4	5	6	7
1.1	2x+1	\mathbb{R}	0	1	0,1	0,001
1.2	x^2	\mathbb{R}	1		0,01	0,001
1.3	$2x^2 - 1$	\mathbb{R}	1	1	0,1	0,002
1.4	$\sin x$	$\left(0,\frac{\pi}{2}\right)$	$\frac{\pi}{2}$	1	0,01	0,001
1.5	$\cos x$	$(0,\pi)$	0	1	0,1	0,01
1.6	$\frac{1}{x}$	(0, 2)	1	1	0,01	0,001
1.7	$\frac{x^2-9}{x-3}$	(3,10]	3	6	0,1	0,001
1.8	$\frac{x-1}{x+1}$	(-1, 1)	0	-1	0,02	0,002
1.9	$3x^2 - 2$	\mathbb{R}	1	1	0,3	0,003
1.10	x^3	\mathbb{R}	1	1	0,1	0,01
1.11	3x+1	\mathbb{R}	0	1	0,2	0,01
1.12	$x^2 - 1$	\mathbb{R}	1	0	1	0,001

1	2	3	4	5	6	7
1.13	$\sin 2x$	$\left(0,\frac{\pi}{2}\right)$	$\frac{\pi}{4}$	1	0,01	0,001
1.14	$\cos 2x$	$(0,\pi)$	$\frac{\pi}{2}$	-1	0,1	0,002
1.15	$\frac{1}{3}x^2 + 1$	\mathbb{R}	3	4	1	0,0001
1.16	100x + 1	\mathbb{R}	0	1	0,1	0,001
1.17	$\frac{x^2}{100} + 1$	(0,1)	0	1	0,1	0,01
1.18	1000 <i>x</i>	\mathbb{R}	0	0	0,1	0,001
1.19	$\frac{x^2-1}{x-1}$	(1, 5]	1	2	0,2	0,01
1.20	$\frac{x^3-1}{x-1}$	(1, 4)	1	3	0,1	0,001

2 Пользуясь определением предела по Коши (на «языке $\varepsilon - \delta$ »), доказать, что $\lim_{x \to a} f(x) = A$.

No	f(x)	D(f)	а	A
1	2	3	4	5
2.1	x^2	\mathbb{R}	3	9
2.2	2x+1	(1, 2)	1	3
2.3	3x	(1, 4)	2	6
2.4	sin x	\mathbb{R}	$\frac{\pi}{2}$	1
2.5	$\cos x$	$(0,\pi)$	π	-1
2.6	$\frac{x^2-1}{x+1}$	(-1, 1)	-1	-2
2.7	$x^2 - 1$	\mathbb{R}	0	-1
2.8	x^3	\mathbb{R}	1	1

1	2	3	4	5
2.9	$\frac{x^2}{100} - 1$	(0, 2)	0	-1
2.10	100x + 1	\mathbb{R}	0	1
2.11	3x+1	(-1, 5)	5	16
2.12	$\frac{x}{100} + 100$	\mathbb{R}	100	100
2.13	$100x^2 - 100$	(1, 4)	1	0
2.14	$\sin 2x$	$(0,\pi)$	$\frac{\pi}{4}$	1
2.15	$\cos 2x$	$\left(\frac{\pi}{4},\pi\right)$	$\frac{\pi}{4}$	0
2.16	$\frac{x^2-1}{x-1}$	(1, 2)	1	2
2.17	$ \begin{array}{r} x-1 \\ \underline{x^3-1} \\ x-1 \end{array} $	(1, 3)	1	3
2.18	$4x^2 - 1$	\mathbb{R}	1	3
2.19	$\frac{1}{x}$	$(0,+\infty)$	1	1
2.20	$3x^2 - 1$	\mathbb{R}	1	2

3 Используя определение предела функции по Гейне (на языке последовательностей), доказать, что не существует предела $\lim_{x\to a} f(x)$.

$N_{\underline{0}}$	f(x)	а	№	f(x)	a
1	2	3	4	5	6
3.1	$ \begin{cases} 2x, x \le 1 \\ x, x > 1 \end{cases} $	1	3.10	ctg x	∞
3.2	sin x	+8	3.11	sign x	0
3.3	$\cos x$	+∞	3.12	$\sin \frac{1}{x}$	0
3.4	$ \begin{cases} 2x, x \le 1 \\ 2 - x, x > 1 \end{cases} $	1	3.13	$\begin{cases} x^2 + 2, x \le 0 \\ x + 1, x > 0 \end{cases}$	0

1	2	3	4	5	6
3.5	$\begin{cases} x^2, x < 0 \\ x + 2, x \ge 0 \end{cases}$	0	3.14	$\begin{cases} 2x, x < 0 \\ 2x^2 + 1, x \ge 0 \end{cases}$	0
3.6	$\begin{cases} -x+1, x \le 2\\ x+1, x > 2 \end{cases}$	2	3.15	$\frac{ x }{x}$	0
3.7	$\begin{cases} x^2, x \le 0 \\ x+1, x > 0 \end{cases}$	0	3.16	$\frac{x-1}{ x-1 }$	1
3.8	$\begin{cases} -x+1, x \le 0 \\ 2+x, x > 0 \end{cases}$	0	3.17	$\cos \frac{1}{x}$	0
3.9	$\begin{cases} -2, x < 1 \\ x + 2, x \ge 1 \end{cases}$	1	3.18	$\sin \frac{1}{x-1}$	1

4 Используя логические символы (на языке « $\varepsilon - \delta$ ») сформулировать утверждение $\lim_{x \to x_0} f(x) = A$ и привести соответствующие примеры.

No	x_0	\boldsymbol{A}	$N_{\overline{0}}$	x_0	A	N_{Ω}	x_0	A	№	x_0	\boldsymbol{A}
4.1	∞	b	4.6	а	∞	4.11	a+0	$-\infty$	4.16	+∞	$-\infty$
4.2	$-\infty$	b	4.7	a-0	+∞	4.12	a+0	$+\infty$	4.17	+∞	+∞
4.3	+∞	b	4.8	a-0	$-\infty$	4.13	$-\infty$	$-\infty$	4.18	+∞	∞
4.4	а	+8	4.9	a-0	8	4.14	$-\infty$	$+\infty$	4.19	a-0	b
4.5	a	8	4.10	<i>a</i> +0	8	4.15	8	8	4.20	<i>a</i> +0	b

5 Найти односторонние пределы $\lim_{x \to a \pm 0} f(x)$ или показать, что эти пределы не существуют. Если существует $\lim_{x \to a} f(x)$, найти его.

No	f(x)	а	№	f(x)	а
1	2	3	4	5	6
5.1	$\sin\frac{1}{x}$	0	5.10	$\begin{cases} \sin x, x < 0 \\ \cos x, x \ge 0 \end{cases}$	0
5.2	$\cos\frac{1}{x}$	0	5.11	tg x	$\frac{\pi}{2}$

1	2	3	4	5	6
5.3	$ \begin{cases} 1, x \le 0 \\ -1, x > 0 \end{cases} $	0	5.12	ctg x	π
5.4	$\begin{cases} 2x^2, x \le 1\\ 1-x, x > 1 \end{cases}$	1	5.13	$\frac{x}{ x }$	0
5.5	$e^{\frac{1}{x}}$	0	5.14	$\sin^2\frac{1}{x}$	0
5.6	$\sin\frac{1}{x-1}$	1	5.15	$\begin{cases} x^2, x \le 1 \\ 2x - 1, x > 1 \end{cases}$	1
5.7	$\frac{ x-2 }{x-2}$	2	5.16	$\begin{cases} x^2, x \le 1 \\ 2x+1, x > 1 \end{cases}$	1
5.8	x	0	5.17	$[x]^*$	1
5.9	$\begin{cases} x+1, & x \le 1 \\ 1-x, & x > 1 \end{cases}$	1	5.18	$\sin\frac{1}{ x-2 }$	2

 $^{^{*\}setminus}[x]$ – целая часть x.

6 Пользуясь определение предела по Коши, доказать, что число A не является $\lim_{x \to a} f(x)$.

No	f(x)	D(f)	а	A
1	2	3	4	5
6.1	$x^2 - 1$	(0,1)	1	1
6.2	$3x^2 - 1$	\mathbb{R}	0	2
6.3	$\frac{x^2 - 1}{x + 1}$	(-1,1)	-1	1
6.4	$\frac{x^2-1}{x-1}$	\mathbb{R}	1	0
6.5	$\frac{x}{100} - 1$	\mathbb{R}	0	4
6.6	$x^3 - x$	(0,10)	1	1

1	2	3	4	5
6.7	$\frac{ x }{x} - x$	(-1,0)	0	2
6.8	100x + 1	\mathbb{R}	0	-1
6.9	2 x -1	(-1, 1)	1	0
6.10	$\frac{x^3-1}{x-1}$	(1,10)	1	2
6.11	2x-1	(0,1)	0	2
6.12	$x^{3} + 1$	(0, 2)	0	2
6.13	$100x^2 - 100$	\mathbb{R}	1	1
6.14	$\frac{1}{x}$	(0,10]	1	4
6.15	$ x \cdot x$	(0, 4)	1	3
6.16	$\frac{ x }{x} + x$	(0, 1)	0	2
6.17	$\sin x $	(0, 1)	0	1
6.18	$\frac{x^2}{100} + x$	\mathbb{R}	10	1
6.19	$-x^2 + 1$	\mathbb{R}	0	2
6.20	$\frac{1}{x} + x$	(1, 3)	1	0

7 Если для некоторой последовательности $x_n \to a$ $\left(x_n \neq a\right)$ имеет место равенство $\lim_{n \to \infty} f(x_n) = A$, то число (или символ ∞) A называют частичным пределом функции f(x) в точке a. Наименьший и наибольший из этих частичных пределов обозначают $\lim_{x \to a} f(x)$ и $\lim_{x \to a} f(x)$ и называют соответственно нижним и верхним пределами f(x) в точке a. Найти $\lim_{x \to a} f(x)$ и $\lim_{x \to a} f(x)$.

No	f(x)	D(f)	а	No	f(x)	D(f)	a
7.1	$\sin \frac{1}{x}$	(0, 1)	0	7.10	$\sin^2 x$	\mathbb{R}	$-\infty$
7.2	$\sin^2\frac{1}{x}$	(0, 1)	0	7.11	$\sin^2\frac{1}{ x }$	$\mathbb{R}\setminus\{0\}$	0
7.3	$x\cos\frac{1}{x}$	$\mathbb{R}\setminus\{0\}$	0	7.12	$\cos^2\frac{1}{ x }$	(0, 2)	0
7.4	$\cos^2\frac{1}{x}$	(1, +∞)	0	7.13	$\sin \frac{1}{x-1}$	(1, 3)	1
7.5	$x\sin\frac{1}{x}$	(0, 1)	0	7.14	$\cos \frac{1}{x-1}$	(-1, 1)	1
7.6	$x^2 \cos \frac{1}{x-1}$	(1, 2)	1	7.15	$x\cos\frac{1}{x-2}$	$\mathbb{R}\setminus\{2\}$	2
7.7	sin x	\mathbb{R}	+∞	7.16	$\frac{x}{1+x^2\sin^2 x}$	\mathbb{R}	+∞
7.8	$2^{\sin x^2}$	\mathbb{R}	+∞	7.17	$2^{\sin\frac{1}{x}}$	ℝ \{0}	0
7.9	$x^2\cos^2 x$	\mathbb{R}	+∞	7.18	$2^{\cos\frac{1}{x-1}}$	$(1, +\infty)$	1

Решение типовых примеров

1.20. Для функции $f(x) = \frac{x^3 - 1}{x - 1}$, $x \in (1, 4)$, a = 1, A = 3 и $\varepsilon_1 = 0, 1$, $\varepsilon_2 = 0,001$ найти δ , чтобы для любых $x \in (1, 4)$, удовлетворяющих условию $0 < |x - a| < \delta$, выполнялось неравенство $|f(x) - A| < \delta$.

$$Peшение$$
. Так как $f(x) = \frac{x^3 - 1}{x - 1}$, $x \in (1, 4)$, $a = 1$, $A = 3$, то

$$|f(x) - A| = \left| \frac{x^3 - 1}{x - 1} - 3 \right| = \left| x^2 + x + 1 - 3 \right| \le$$

$$\leq |(x-1)(x+1)| + |x-1| = |x-1| \cdot (|x+1|+1).$$

Будем искать нужное δ среди $\{\delta:\delta\leq 1\}$. Для $x\in(1,4)$, удовлетворяющих неравенству $0<|x-1|\leq\delta\leq 1$, имеем $0< x\leq 2$ и $|x+1|+1\leq 4$. Поэтому $|f(x)-A|<4\delta$.

Теперь если $\varepsilon=\varepsilon_1=0,1$, то для него δ найдем из равенства $4\delta=0,1$, т.е. $\delta_1=\frac{1}{40}$. Если же $\varepsilon=\varepsilon_2=0,001$, то полагаем $4\delta=0,001$, т.е. $\delta_2=\frac{1}{4000}$. Заметим, что найденные $\delta_i\leq 1$.

2.20. Пользуясь определением предела по Коши (на «языке $\varepsilon-\delta$ »), доказать, что $\lim_{x\to a} f(x) = A$.

Решение. Так как $f(x) = 3x^2 - 1$, $x \in \mathbb{R}$, a = 1, A = 2, то

$$|f(x) - A| = |3x^2 - 3| = 3|x - 1| \cdot |x + 1|.$$

Возьмем $\forall \varepsilon > 0$ и будем искать нужное δ среди $\{\delta : \delta \le 1\}$. Тогда $0 < |x-1| < \delta \le 1 \implies 0 < x \le 2$. Поэтому $3|x+1| \le 9$ и

$$|f(x)-A|<9\delta$$
.

Тогда, если $9\delta = \varepsilon$, то $|f(x) - A| < \varepsilon$ для всех $x \in D(f)$ и $0 < |x - 1| < \delta$. Поэтому, положив $\delta = \min\left\{1, \frac{\varepsilon}{9}\right\}$, будем иметь, что $\forall \varepsilon > 0$ при $\delta = \min\left\{1, \frac{\varepsilon}{9}\right\}$ для $\forall x \in D(f)$ и $0 < |x - 1| < \delta$ справедливо неравенство

$$|f(x)-2|<\varepsilon.$$

Итак, показано, что $\lim_{x\to 1} (3x^2 - 1) = 2$.

3.18. Используя определение предела функции по Гейне (на языке последовательностей), доказать, что не существует предела $\lim_{x\to a} f(x)$, если

$$f(x) = \sin \frac{1}{x-1}, a=1.$$

Решение. Для последовательности

$$x'_n = 1 + \frac{1}{n\pi} \to 1, \ f(x'_n) = \sin n\pi \to 0.$$

С другой стороны,

$$x_n'' = 1 + \frac{1}{\frac{\pi}{2} + 2n\pi} \to 1$$
, a $f(x_n'') = \sin(\frac{\pi}{2} + 2n\pi) \to 1$.

Из определения предела по Гейне следует, что предел $\limsup_{x\to 1} \frac{1}{x-1}$ не существует.

4.20. Используя логические символы (на языке « $\varepsilon - \delta$ ») сформулировать утверждение $\lim_{x \to x_0} f(x) = A$ и привести соответствующие примеры, если $x_0 = a + 0$, A = b.

P е w

$$\Pi pumep: f(x) = \frac{|x|}{x}, a = 0, b = 1 \lim_{x \to 0+0} \frac{|x|}{x} = \lim_{x \to 0+0} \frac{x}{x} = 1.$$

5.18. Найти односторонние пределы $\lim_{x \to a \pm 0} f(x)$, где $f(x) = \sin \frac{1}{|x-2|}$, a=2, или показать, что эти пределы не существуют. Если существует $\lim_{x \to a} f(x)$, найти его.

Peшение. Покажем, что не существует $\lim_{x\to 2+0} \sin\frac{1}{|x-2|}$. Для доказательства воспользуемся определением предела по Гейне: при $n\to\infty$

$$x'_{n} = 2 + \frac{1}{\frac{\pi}{2} + 2n\pi} \rightarrow 2 + 0, \qquad f(x'_{n}) = \sin\frac{\pi}{2} \rightarrow 1;$$

$$x''_n = 2 + \frac{1}{n\pi} \to 2 + 0, \qquad f(x''_n) = \sin n\pi \to 0.$$

Итак, показано, что не существует $\lim_{x\to 2+0} \sin\frac{1}{|x-2|}$. Аналогично показано, что не существует $\lim_{x\to 2-0} \sin\frac{1}{|x-2|}$. Таким образом, показано, что не существует $\lim_{x\to 2} \sin\frac{1}{|x-2|}$.

6.20 Пользуясь определение предела по Коши, доказать, что число A не является $\lim_{x\to a} f(x)$, если $f(x) = \frac{1}{x} + x$, $x \in (1,3)$, a = 1, A = 0.

Peшение. Нужно показать, что $\exists \varepsilon > 0$ такое, что $\forall \delta > 0$ $\exists x' \in D(f)$, удовлетворяющее условию $0 < |x' - 1| < \delta$, для которого $|f(x') - 0| \ge \varepsilon$. Возьмем $\varepsilon = 1$. Для любого $0 < \delta < 1$ положим $x' = 1 + \frac{\delta}{2}$. Тогда $x' \in (1,3)$

$$0 < |x'-1| = \frac{\delta}{2} < \delta \text{ m } |f(x')-0| = 1 + \frac{\delta}{2} + \frac{1}{1 + \frac{\delta}{2}} \ge 1 = \varepsilon.$$

Нужное утверждение доказано.

7.18 Найти
$$\underset{x \to a}{\underline{\lim}} f(x)$$
 и $\underset{x \to a}{\overline{\lim}} f(x)$, если $f(x) = 2^{\cos \frac{1}{x-1}}$, $x \in (1,+\infty)$, $a = 1$.

Peшение. Так как $-1 \le \cos t \le 1$, то $\frac{1}{2} \le f(x) \le 2$. Поэтому если A — частичный предел f(x) в точке a = 1, то $\frac{1}{2} \le A \le 2$. С другой стороны, имеем: при $n \to \infty$

$$x'_n = 1 + \frac{1}{\pi + 2n\pi} \to 1$$
, a $f(x'_n) = 2^{\cos \pi} = \frac{1}{2} \to \frac{1}{2}$;
 $x''_n = 1 + \frac{1}{\frac{\pi}{2} + 2n\pi} \to 1$, a $f(x''_n) = 2^{\cos \frac{\pi}{2}} = 2 \to 2$.

Следовательно, $\underline{\lim}_{x\to a} f(x) = \frac{1}{2}$, a $\overline{\lim}_{x\to a} f(x) = 2$.

Лабораторная работа № 8 Замечательные пределы. Вычисление пределов.

Необходимые понятия и теоремы: первый и второй замечательные пределы, предел и арифметические операции, пределы монотонной функции, предел композиции, критерии Коши существования предела.

Литература: [1] с. 170 – 180; [2] с. 56 – 66; [6] с. 98 – 102, 128–137.

1 Используя свойства пределов и известные пределы, вычислить $\lim_{x\to a} f(x)$:

No		A		В		С
710	а	f(x)	а	f(x)	а	f(x)
1	2	3	4	5	6	7
1.1	0	$\frac{x^2-1}{2x^2-x-1}$	4	$\frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$	0	$\frac{x^2}{ x }$
1.2	1	$\frac{x^2-1}{2x^2-x-1}$	16	$\frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$	1	$\frac{\left x-1\right ^3}{x^2-1}$
1.3	+∞	$\frac{x^2+1}{2x^2+x+1}$	8	$\frac{\sqrt{2x+9}-5}{\sqrt[3]{x}-2}$	-2	$\frac{ x+2 }{ x-1 }$
1.4	-1	$\frac{x^3+1}{x+1}$	2	$\frac{x-2}{\sqrt{x}-\sqrt{2}}$	0	$x\sin\frac{1}{ x }$
1.5	1	$(2+x)^5$	1	$\frac{\sqrt{3x+1}-2}{\sqrt{x}-1}$	0	$ x \sin\frac{1}{x}$
1.6	2	$\frac{x^2-4}{x-2}$	1	$\frac{x^2 - 1}{\sqrt[3]{x} - 1}$	1	$ x-1 \cdot \cos \frac{1}{ x-1 }$
1.7	1	$\frac{x+x^2+x^3-3}{x-1}$	0	$\frac{\sqrt[3]{x+1}-1}{x}$	0	$x \cdot signx$
1.8	3	$\frac{x^2 - 5x + 6}{x^2 - 8x + 15}$	-8	$\frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}$	1	$ x-1 \cdot sign(x-1)$
1.9	1	$\frac{x^3 - 3x + 2}{x^4 - 4x + 3}$	1	$\frac{\sqrt{x}-1}{\sqrt[4]{x}-1}$	-3	$ x+3 \cdot sign(\sin x)$
1.10	-1	$\frac{x^2 - 2x - 3}{x^2 - 5x - 6}$	1	$\frac{\sqrt[5]{x}-1}{\sqrt[6]{x}-1}$	+∞	$\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}$

1	2	3	4	5	6	7
1.11	-1	$\frac{x^3 - 2x - 1}{x^5 - 2x - 1}$	-2	$\frac{\sqrt[3]{x-6}+2}{x^3+8}$	+∞	$\sqrt{(x+1)(x+2)} - x$
1.12	1	$\frac{x^5-1}{x^3-1}$	1	$\frac{\sqrt{x}-1}{\sqrt{4x}-2}$	1	$x x -\frac{1}{ x }$
1.13	0	$\frac{(1+x)(1-2x)-1}{x}$	0	$\frac{\sqrt[4]{x+1}-1}{x}$	+∞	$\sqrt{x+1}-\sqrt{x}$
1.14	1	$\frac{1}{1-x} - \frac{2}{1-x^2}$	1	$\frac{x}{\sqrt{x^2 - 1}}$ $\frac{\sqrt{x^2 - 1}}{\sqrt{x - 4}}$	+∞	$\frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{\sqrt{x+1}}$
1.15	1	$\frac{x^2-1}{x^2-2x+1}$	16	$\frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$	+∞	$\sqrt{x-1}-\sqrt{x+1}$
1.16	-1	$\frac{x^3 - 2x - 1}{x^5 - 2x - 1}$	1	$\frac{\sqrt{x^3} - 1}{x - 1}$	+∞	$\sqrt{2x+1}-\sqrt{2x}$
1.17	-1	$\frac{x^5+1}{x+1}$	4	$\frac{x-4}{\sqrt{x}-2}$	+∞	$\frac{ x }{x}$
1.18	1	$\frac{x^3 + 2x - 3}{x - 1}$	1	$\frac{\sqrt{4x^2} - 2}{\sqrt{x} - 1}$	-1	$\frac{\sqrt{1-3x}-2}{\sqrt{ x }-1}$
1.19	-1	$\frac{x^2-1}{2x^2+x-1}$	1	$\frac{\sqrt{x^3} - 1}{x^2 - 1}$	-16	$\frac{\sqrt[4]{-x}-2}{\sqrt{ x }-4}$
1.20	1	$\frac{2}{1-x^2} + \frac{1}{x-1}$	1	$\frac{\sqrt[3]{x} - \sqrt[4]{x}}{x^2 - 1}$	1	$\frac{\sqrt{1+3x}-2}{\sqrt{ x }-1}$

2 Используя свойства пределов и первый замечательный предел, вычислить $\lim_{x \to a} f(x)$:

No	A		В			
212	а	f(x)	а	f(x)		
1	2	3	4	5		
2.1	0	$\frac{\sin 5x}{x}$	1	$\frac{\sin x - \sin 1}{x - 1}$		
2.2	0	$\frac{\sin^2 2x}{\sin^2 3x}$	0	$\frac{1-\cos 4x}{\sin 3x}$		

1	2	3	4	5
2.3	0	$\frac{1-\cos 2x}{2x^2}$	1	$\frac{\sin \pi x}{x-1}$
2.4	0	$\frac{\sin^2 3x}{\sin^2 5x}$	1	$\frac{\sin x - \sin 1}{x - 1}$
2.5	0	$\frac{1-\cos x^2}{\sin^4(x/2)}$	0	$\frac{1 - \sqrt{\cos x}}{1 - \cos \sqrt{x}}$
2.6	π	$\frac{\sin 2x}{\sin 3x}$	1	$\frac{x-1}{\cos\frac{\pi x}{2}}$
2.7	0	$\frac{1-\cos 5x}{x\sin 7x}$	1	$\frac{\sin \pi x}{\sin(x-1)}$
2.8	1	$\frac{\sin 2\pi x}{\sin(x-1)}$	0	$\frac{tgx - \sin x}{x^3}$
2.9	0	$\frac{1-\cos x^2}{x^4}$	1	$\frac{\sin^2(x-1)}{\sin^2\pi x}$
2.10	0	$\frac{1-\cos x^2}{\sin^2 2x}$	0	$\frac{tg \ x - \sin x}{x^3}$
2.11	0	$\frac{\sin 2x}{\sin 3x}$	1	$\frac{\sin \pi x^2}{\sin \pi x^3}$
2.12	0	$\frac{\arcsin x}{x \frac{\cos x - \cos 2}{x - 2}}$	$\frac{\pi}{2}$	$\frac{\cos x}{x - \frac{\pi}{2}}$
2.13	2	$\frac{\cos x - \cos 2}{x - 2}$	0	$\frac{\sqrt{1-\cos x^2}}{1-\cos x}$
2.14	0	$\frac{\sin x^2}{1 - \cos 2x}$	$\frac{\pi}{3}$	$\frac{\sin(x-\frac{\pi}{3})}{1-2\cos x}$
2.15	0	$\frac{\sin^2 2x}{\sin 2x^2}$	2	$\frac{\sin x - \sin 2}{x - 2}$
2.16	π	$\frac{\cos\frac{x}{2}}{x-\pi}$	0	$\frac{\sin^2 4x}{1 - \cos x}$

1	2	3	4	5
2.17	1	$\frac{(x-1)^2}{\cos\frac{\pi}{2}x}$	0	$\frac{\arcsin^2 x}{x^2}$
2.18	0	$\frac{\sin 5x - \sin 3x}{\sin x}$	0	$\frac{x}{\sin 3x}$
2.19	0	$\frac{\sin^2\frac{x}{2}}{1-\cos 2x}$	$\frac{\pi}{2}$	$\frac{\cos x}{x - \frac{\pi}{2}}$
2.20	$\frac{\pi}{6}$	$\frac{\sin^2(x-\frac{\pi}{6})}{1-2\sin x}$	-1	$\frac{\sin \pi x}{\sin(x+1)}$

3 Используя свойства пределов, второй замечательный предел и равенства $\lim_{x\to a} \ln g(x) = \ln(\lim_{x\to a} g(x))$, $\lim_{x\to a} e^{g(x)} = e^{\lim_{x\to a} g(x)}$, вычислить $\lim_{x\to a} f(x)$:

№	A		В	
	а	f(x)	a	f(x)
1	2	3	4	5
3.1	0	$(1+2x)^{\frac{1}{x}}$	∞	$\left(\frac{x+2}{2x-1}\right)^{x^2}$
3.2	0	$\left(1+\frac{x}{7}\right)^{\frac{5}{x}}$	∞	$\left(\frac{x^2-1}{x^2+1}\right)^{\frac{x-1}{x+1}}$
3.3	∞	$\left(1 + \frac{1}{4x+1}\right)^{8x}$	0	$\sqrt[x]{\cos\sqrt{x}}$
3.4	∞	$\left(1 + \frac{2}{x - 6}\right)^{4x - 1}$	1	$\left(\frac{\sin x}{\sin 1}\right)^{\frac{1}{x-1}}$
3.5	∞	$\left(1 + \frac{7}{x - 6}\right)^{x - 1}$	∞	$\left(\sin\frac{1}{x} + \cos\frac{1}{x}\right)^x$
3.6	∞	$\left(1-\frac{1}{x}\right)^{2x}$	0	$\left(\frac{2-x}{2+x}\right)^{\frac{1}{\sin x}}$
3.7	0	$\sqrt[x]{1-2x}$	0	$(\cos x)^{\frac{1}{\sin^2 x}}$

1	2	3	4	5
3.8	∞	$\left(\frac{x-14}{x-10}\right)^{x-2}$	0	$x^2\sqrt{\cos x}$
3.9	0	$\left(\frac{x+4}{x}\right)^{\frac{3}{x}}$	0	$(1-x)^{\frac{1}{\sin x}}$
3.10	0	$\sqrt[x]{1-4x}$	0	$(1+\sqrt{x})^{-\frac{1}{2\sqrt{x}}}$
3.11	0	$\left(\frac{1+x}{1-x}\right)^{\frac{2}{x}}$	∞	$(1+\sqrt{x})^{-\frac{1}{2\sqrt{x}}}$ $\left(\frac{x^2+1}{x^2-2}\right)^{x^2}$
3.12	0	$\left(1+\frac{x}{8}\right)^{\frac{5}{x}}$	0	$\left(1+x^2\right)^{\operatorname{ctg}^2 x}$
3.13	8	$\left(1 + \frac{6}{3x + 4}\right)^{2x}$	0	$\left(\frac{1-\sin x}{1+\sin x}\right)^{\frac{1}{\sin x}}$
3.14	8	$\left(1 - \frac{1}{4x + 3}\right)^{x + 4}$	2	$\left(\frac{\sin x}{\sin 2}\right)^{\frac{1}{x-2}}$
3.15	8	$\left(1 + \frac{1}{5x + 1}\right)^{x - 1}$	0	$(x+e^x)^{\frac{1}{x}}$
3.16	∞	$\left(\frac{x}{x+3}\right)^{x+2}$	0	$\left(\frac{1-\sin x}{1+\sin x}\right)^{\frac{1}{x}}$
3.17	0	$\sqrt[2x]{1+3x}$	0	$\left(\cos x\right) \frac{1}{1-\cos 2x}$
3.18	∞	$\left(\frac{3x+1}{3x-1}\right)^{x+4}$	0	$(\sin x + \cos x)^{\frac{1}{x}}$
3.19	∞	$\left(\frac{2x-1}{1-2x}\right)^{3x}$	0	$\left(1+3x^2\right)\frac{1}{\sin^2 x}$
3.20	0	$\sqrt[3x]{1+2x}$	0	$(\cos x - \sin x)^{\frac{1}{x}}$

4 Используя свойства пределов, известные пределы, предел $\lim_{x\to \varphi_0}\cos x=\cos \varphi_0,$ вычислить $\lim_{x\to a}f(x)$:

No		A		В
	а	f(x)	а	f(x)
1	2	3	4	5
4.1	0	$\frac{2^x-1}{x}$	1	$\frac{\ln x}{x-1}$
4.2	∞	$\frac{\ln\left(2+e^{3x}\right)}{\ln(3+e^{2x})}$	1	$(1-x)\log_x 2$
4.3	+∞	$\frac{\ln\left(x^2 - x + 1\right)}{\ln\left(x^{10} + x + 1\right)}$	1	$(1+\sin\pi x)^{\cot \pi x}$
4.4	0	$\left(\frac{1+\operatorname{tg} x}{1+\sin x}\right)^{\frac{1}{\sin^2 x}}$	0	$x \log_{1-x} 2$
4.5	$\frac{\pi}{2}$	$(\sin x)^{\operatorname{tg} x}$	2	$\frac{2^x - 4}{x - 2}$
4.6	0	$\frac{\sqrt[3]{1+2x}-1}{x^2}$	0	$\frac{\sin(\sin x)}{\sin 5x}$
4.7	e	$\frac{\ln \ln x}{x - e}$	π	$\frac{\ln \frac{x}{\pi}}{x - \pi}$
4.8	1	$\frac{\lg \frac{x+1}{2}}{x-1}$	∞	$x \ln \frac{2x+1}{2x}$
4.9	0	$\frac{\ln\cos 2x}{\ln\cos 3x}$	2	$\frac{x^x - 4}{x - 2}$
4.10	0	$\frac{shx}{x}$	$\frac{\pi}{2}$	$(1-\cos x)^{\operatorname{tg}^2 x}$
4.11	0	$\frac{\ln(1+x)}{x}$	∞	$x \ln \frac{x+1}{x}$
4.12	2	$\frac{\ln x - \ln 2}{x - 2}$	+∞	$\frac{\ln(1+3^x)}{\ln(1+2^x)}$

1	2	3	4	5
4.13	0	$\left(\frac{1+tgx}{1+\sin x}\right)^{\frac{1}{\sin^2 x}}$	$\frac{\pi}{4}$	$(\operatorname{tg} x)^{\operatorname{tg} 2x}$
4.14	0	$\left(\frac{\cos x}{\cos 2x}\right)^{\frac{1}{x^2}}$	1	$\frac{x^x - 1}{x - 1}$
4.15	0	$\left[tg\left(\frac{\pi}{4}-x\right)\right]^{\operatorname{ctg} x}$	0	$\frac{e^{2x}-1}{x^2}$
4.16	3	$\frac{2^x - 8}{\sin \pi x}$	e	$\frac{\ln \frac{x}{e}}{x - e}$
4.17	0	$(x+e^{2x})^{\frac{1}{x}}$	2	$\frac{\ln \frac{x}{2}}{x-2}$
4.18	7	$\frac{\ln x - \ln 7}{x - 7}$	0	$\left(\frac{\cos x}{\cos 2x}\right)^{\frac{1}{x^2}}$
4.19	+∞	$\frac{x^4}{2^x}$	2	$\frac{\log_2 \frac{x}{2}}{x-2}$
4.20	1	$(1-\sin\pi x)^{\operatorname{ctg} x}$	2	$\frac{2^x - 4}{\sin \pi x}$

Решение типовых примеров

1.20 Используя свойства пределов и известные пределы, вычислить **A)**
$$\lim_{x\to 1} \left(\frac{2}{1-x^2} + \frac{1}{x-1}\right)$$
; B) $\lim_{x\to 1} \frac{\sqrt[3]{x} - \sqrt[4]{x}}{x^2-1}$; C) $\lim_{x\to 1} \frac{\sqrt{1+3x}-2}{\sqrt{|x|}-1}$.

Решение.

А) Приведя к общему знаменателю выражение, стоящее под знаком предела, получим

$$\lim_{x \to 1} \left(\frac{2}{1 - x^2} + \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{1 - x}{(1 - x)(1 + x)} = \lim_{x \to 1} \frac{1}{1 + x} =$$

$$= \frac{1}{\lim_{x \to 1} (1 + x)} = \frac{1}{\lim_{x \to 1} 1 + \lim_{x \to 1} x} = \frac{1}{2}.$$

В) Положим
$$x = t^{12}$$
. Тогда, учитывая, что при $x \to 1$ $t \to 1$, получим
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - \sqrt[4]{x}}{x^2 - 1} = \lim_{x \to 1} \frac{t^4 - t^3}{t^{24} - 1} = \lim_{x \to 1} \frac{t^3(t - 1)}{(t - 1)(t^{23} + t^{22} + \dots + t + 1)} = \frac{\lim_{x \to 1} t^3}{\lim_{x \to 1} (1 + t + \dots + t^{22} + t^{23})} = \frac{1}{24}.$$

С) Домножая числитель и знаменатель функции на сопряженные выражения, будем иметь:

$$\lim_{x \to 1} \frac{\sqrt{1+3x}-2}{\sqrt{|x|}-1} = \lim_{x \to 1} \frac{(\sqrt{1+3x}-2)(\sqrt{1+3x}+2)}{(\sqrt{1+3x}+2)} \cdot \frac{\sqrt{|x|}+1}{(\sqrt{|x|}-1)(\sqrt{|x|}+1)} =$$

$$= \lim_{x \to 1} \frac{\sqrt{|x|}+1}{\sqrt{1+3x}+2} \cdot \frac{3(x-1)}{|x|-1} = \frac{\lim_{x \to 1} (\sqrt{|x|}+1)}{\lim_{x \to 1} (\sqrt{1+3x}+2)} \cdot 3 = \frac{3}{2}.$$

Здесь мы воспользовались тем, что при $x \to 1 \ |x| = x$, и равенствами:

 $\lim_{x \to 1} \sqrt{|x|} = 1$; $\lim_{x \to 1} \sqrt{1 + 3x} = 2$, которые доказываются, например, по определению. Можно опереться на равенство $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{\lim_{x \to x_0} f(x)}$, которое также следует из определения предела.

2.20 Используя свойства пределов и первый замечательный предел, вычислить

A)
$$\lim_{x \to \frac{\pi}{6}} \frac{\sin^2\left(x - \frac{\pi}{6}\right)}{1 - 2\sin x}; \quad \text{B) } \lim_{x \to 1} \frac{\sin \pi x}{\sin(x+1)}.$$

Решение.

A) Сделаем замену $x - \frac{\pi}{6} = t$. Тогда

$$\lim_{x \to \frac{\pi}{6}} \frac{\sin^2\left(x - \frac{\pi}{6}\right)}{1 - 2\sin x} = \lim_{t \to 0} \frac{\sin^2 t}{1 - 2\sin\left(t + \frac{\pi}{6}\right)} = \lim_{t \to 0} \frac{\sin^2 t}{1 - 2\frac{\sqrt{3}}{2}\sin t - \cos t} =$$

$$= \lim_{t \to 0} \frac{\sin t}{1 - \cos t} - \sqrt{3} = \frac{\lim_{t \to 0} \sin t}{2 \sin^2 \frac{t}{2}} - \sqrt{3} = \frac{\lim_{t \to 0} \sin t}{\lim_{t \to 0} \frac{2 \sin^2 \frac{t}{2}}{\sin t} - \sqrt{3}} = \frac{\lim_{t \to 0} \sin^2 \frac{t}{2}}{2 \cdot 1 \cdot 0 \cdot 1 - \sqrt{3}} = \frac{\lim_{t \to 0} \sin t}{2 \cdot 1 \cdot 0 \cdot 1 - \sqrt{3}} = \frac{0}{-\sqrt{3}} = 0.$$

Это следует из того, что $\limsup_{t\to a} t = \sin a$. Действительно,

$$\left|\sin t - \sin a\right| = 2 \cdot \left|\sin \frac{t-a}{2}\right| \cdot \left|\cos \frac{t+a}{2}\right| \le 2 \cdot \left|\sin \frac{t-a}{2}\right| \le \left|t-a\right|.$$

Поэтому для $\forall \varepsilon > 0 \ \exists \delta = \frac{\varepsilon}{2}$ такое, что из неравенства

$$|t-a| < \delta \Rightarrow |\sin t - \sin a| \le \frac{\varepsilon}{2} < \varepsilon$$
, T.e. $\lim_{t \to a} \sin t = \sin a$.

В) Сделаем замену x + 1 = t. Тогда

$$\lim_{x \to 1} \frac{\sin \pi x}{\sin(x+1)} = \lim_{t \to 0} \frac{\sin(\pi t - \pi)}{\sin t} = \lim_{t \to 0} \frac{t}{\sin t} \cdot (-1) \cdot \frac{\sin \pi t}{\pi t} \cdot \pi =$$

$$= -\pi \cdot \lim_{t \to 0} \frac{t}{\sin t} \cdot \lim_{t \to 0} \frac{\sin \pi t}{\pi t} = -\pi,$$

так как из первого замечательного предела следует, что

$$\lim_{t\to 0} \frac{t}{\sin t} = 1, \lim_{t\to 0} \frac{\sin \pi t}{\pi t} = 1.$$

3.20 Используя свойства пределов, второй замечательный предел и ра-

венства $\lim_{x\to a} \ln g(x) = \ln(\lim_{x\to a} g(x))$, $\lim_{x\to a} e^{g(x)} = e^{\lim_{x\to a} g(x)}$, вычислить

A)
$$\lim_{x\to 0} \sqrt[3x]{1+2x}$$
; B) $\lim_{x\to 0} (\cos x - \sin x)^{\frac{1}{x}}$.

Решение.

А) Преобразовывая функцию, будем иметь:

$$\lim_{x \to 0} \sqrt[3x]{1+2x} = \lim_{x \to 0} (1+2x)^{\frac{1}{3x}} = \lim_{x \to 0} (1+2x)^{\frac{1}{2x} \cdot \frac{2x}{3x}} =$$

$$= \lim_{x \to 0} \left[(1+2x)^{\frac{1}{2x}} \right]^{\frac{2}{3}} = 2x = t = \lim_{t \to 0} \left[(1+t)^{\frac{1}{t}} \right]^{\frac{2}{3}} =$$

$$= \lim_{t \to 0} e^{\frac{2}{3}\ln(1+t)^{1/t}} = e^{\frac{2}{3}\ln\left[\lim_{t \to 0} (1+t)^{1/t}\right]} = e^{\frac{2}{3}}.$$

В) Произведя преобразования, получим

$$\lim_{x \to 0} (\cos x - \sin x)^{\frac{1}{x}} = \lim_{x \to 0} \left(1 - \sin x - 2\sin^2 \frac{x}{2} \right) - \sin x - 2\sin^2 \frac{x}{2} = \frac{-\sin x - 2\sin^2 \frac{x}{2}}{x} = \frac{-\sin x - 2\sin^2 \frac{$$

Здесь воспользовались равенством из условия, свойствами предела и вторым замечательным пределом.

4.20 Используя свойства пределов, известные пределы, предел $\lim_{x \to \varphi_0} \cos x = \cos \varphi_0$, вычислить:

A)
$$\lim_{x \to 1} (1 - \sin \pi x)^{\cot \pi x}$$
; **B)** $\lim_{x \to 2} \frac{2^x - 4}{\sin \pi x}$.

Решение.

А) Преобразовывая функцию, будем иметь:

$$\lim_{x \to 1} (1 - \sin \pi x)^{\cot \pi x} = \lim_{x \to 1} (1 - \sin \pi x)^{\frac{1}{-\sin \pi x} \cdot (-\cos \pi x)} =$$

$$-\lim_{x \to 1} \cos \pi x \cdot \ln \left[\lim_{x \to 1} (1 - \sin \pi x)^{-\frac{1}{\sin \pi x}} \right]_{=e^{1 \cdot \ln e}} = e^{1 \cdot \ln e} = e.$$

Мы воспользовались тем, что $\limsup_{x\to 1} \cos \pi x = \cos(-\pi) = -1$ и равенствами из предыдущей задачи.

В). Преобразовав функцию, получим

$$\lim_{x \to 2} \frac{2^x - 4}{\sin \pi x} = \lim_{x \to 2} \left(\frac{2^x - 4}{x - 2} \cdot \frac{x - 2}{\sin \pi x} \right) = \lim_{x \to 2} \frac{2^x - 4}{x - 2} \cdot \lim_{x \to 2} \frac{x - 2}{\sin \pi x}.$$

Найдем первый из пределов произведения:

$$\lim_{x \to 2} \frac{2^{x} - 4}{x - 2} = 4 \lim_{x \to 2} \frac{2^{x - 2} - 1}{x - 2} = 4 \lim_{t \to 0} \frac{2^{t} - 1}{t} =$$

$$= \left[2^{t} - 1 = u \atop t = \log_{2}(1 + u) \right] = 4 \lim_{u \to 0} \frac{u}{\log_{2}(1 + u)} = 4 \lim_{u \to 0} \frac{u}{\ln(1 + u)} \cdot \ln 2 =$$

$$= 4 \ln 2 \cdot \lim_{u \to 0} \frac{u}{\ln(1 + u)} = \left[(1 + u)^{\frac{1}{u}} = v \atop u \to 0 \Rightarrow v \to e \right] = 4 \ln 2 \cdot \frac{1}{\lim_{v \to e} \ln v} = 4 \ln 2.$$

Вычислим второй предел:

$$\lim_{x \to 2} \frac{x - 2}{\sin \pi x} = x - 2 = t = \lim_{t \to 0} \frac{t}{\sin(\pi t + 2\pi)} = \frac{1}{\pi} \cdot \lim_{t \to 0} \frac{\pi t}{\sin \pi t} = \frac{1}{\pi}.$$

Итак,
$$\lim_{x\to 2} \frac{2^x - 4}{\sin \pi x} = \frac{4}{\pi} \ln 2$$
.

Лабораторная работа № 9 Асимптотическое поведение функций. Вычисление пределов

Heoбxoдимое понятие и теоремы: бесконечно малые функции при $x \rightarrow a$, сравнение бесконечно малых функций, асимптотические равенства, эквивалентные бесконечно малых, применение асимптотических равенств для вычисления пределов.

Литература: [1] с. 181-184, 216-218, [2] с.72-77, [6] с. 102-105, 136-137.

1 Определить порядок относительно x бесконечно малой при $x \to 0$ (при $x \to 0+$) функций g(x):

No	A	В
712	g(x)	g(x)
1	2	g(x) 3
1.1	$x^3 + x$	$e^{\sqrt{x}}-1$
1.2	$\frac{4x^5}{1+x^2}$	$e^{\sin x}-1$
1.3	$\frac{1}{1+x^2}$ $\sqrt{x} + \frac{x^2}{\sin x}$	$e^{x^2} - \cos^2 x$
1.4	$\sqrt{x}tg\frac{\pi x}{2}$	$\ln(1+x\sin\sqrt{x})$
1.5	$\cos x - \sqrt[3]{\cos x}$	$\frac{\cos \pi x - 1}{\sin \sqrt{x}}$
1.6	$x\sin^2 x$	$\arcsin(\sqrt{1+x}-1)$
1.7	$\arcsin x^2$	$tgx - \sin x$
1.8	$\sqrt{x^2+1}-1$	$e^{tgx}-x$
1.9	$\arcsin(2\sin x)$	$\sqrt{x}\sin^2\sqrt{x}$
1.10	$e^{\cos x} - e$	$\sqrt{x}\ln(1+\sqrt{x})$
1.11	$\frac{x(x+1)}{1+2x}$	$e^{x^2}-1$
1.12	$\frac{1+2x}{\sqrt{x}-\sqrt[3]{x}}$	$e^x - \cos x$
1.13	$\sqrt[3]{1+\sqrt{x}-1}$	$1-\cos x$
1.14	$\sqrt{1+2x}-1-\sqrt{x}$	$\ln(1+\sin^2 x)$
1.15	$\sin\sqrt{1-x}-\sin 1$	$\frac{x\sqrt{x}}{\sin x}$

1	2	3
1.16	$\sqrt{x}\sin^2\sqrt{x}$	$\arcsin(\sqrt{4+x^2}-2)$
1.17	$1-\cos 2x^2$	$\ln(1+\sqrt{x\sin x})$
1.18	$\arccos(\sqrt{1+x})$	$\sin^2\frac{\sqrt{x}}{2}$
1.19	$\frac{\sin^2 x}{\sqrt{x}}$	$\arccos(\sqrt{1+x^2})$
1.20	$ln(1+\sqrt{x})$	$\arcsin(1-\cos x)$

2 Для бесконечно малых при $x \to a$ (при $x \to a + 0$) функций f(x) и g(x) выяснить, какие из следующих соотношений верны: 1) f(x) = O(g(x)), 2) g(x) = O(f(x)), 3) f(x) = o(g(x)), 4) g(x) = o(f(x)), 5) $f(x) \sim g(x)$, 6) f(x) = g(x):

№	a	f(x)	g(x)
1	2	3	4
2.1	0	$\sin x$	arcsinx
2.2	1	$tg\pi x$	$\sqrt{x-1}$
2.3	0	$ln(1 + \sin x)$	$\sqrt{1-\cos x}$
2.4	8	$\sqrt{x^2+1}- x $	$\frac{1}{\sqrt{ x }}$ \sqrt{x}
2.5	0	arcsin x	\sqrt{x}
2.6	0	$ln(1+\sqrt{x})$	$\sin \sqrt{x}$
2.7	0	$\frac{1-\cos 2x}{tgx}$	ln(1+x)
2.8	1	$e^{x^2}-1$	$\sin x^2$
2.9	0	$e^{\sin x} - 1$	ln(1-x)
2.10	2	$\frac{2^x - 4}{\sqrt{x}}$	$\sin \sqrt{x}$
2.11	1	$\cos \frac{\pi}{2} x$	$\sin(x-1)$
2.12	0	$\ln(1+x^2)$	2x
2.13	+∞	$\sqrt{x^2-1}-x$	$\frac{1}{x}$

1	2	3	4
2.14	0	x^2actgx	$\sin^3 x$
2.15	1	$\sqrt{x-1} \arccos x$	$\sqrt{(x-1)^3}$
2.16	1	$ln(1-\sin^2 x)$	tg^2x
2.17	0	$\frac{(1-\cos x)^2}{\sin x}$	$\sin\frac{x}{2}$
2.18	$\frac{\pi}{2}$	$\arccos \frac{2}{\pi} x$	$\sin 2x$
2.19	0	$\arccos \frac{1-x}{1+x}$	$\sin^2 x$
2.20	0	$\arccos \frac{1-x}{1+x}$	$\sqrt{1-\cos x}$

3 Для бесконечно малой при $x \to a$ (при $x \to a+0$) функции f(x) найти бесконечно малую при $x \to a$ функцию вида $g(x) = cx^{\alpha}$ $(c, \alpha \in \mathbb{R})$ такую что: 1) f(x) = g(x), 2) $f(x) \sim g(x)$ при $x \to a$:

3.6		A	В
No	a	f(x)	f(x)
1	2	3	4
3.1	0	e^x-1	$\arcsin^2 x$
3.2	0	$\sqrt{1+x}-1$	$\arcsin \sqrt{x}$
3.3	1	$\sqrt[3]{x}-1$	$\arcsin \sqrt{x-1}$
3.4	1	$\ln^2(2-x)$	$e^{2x}-e^2$
3.5	0	$\sqrt[5]{1-x}-1$	$\sin^{10}\sqrt{x}$
3.6	0	$e^{\ln(1-x)}-1$	$\arcsin \sqrt[3]{x}$
3.7	0	$\sqrt[3]{1-\cos x}$	$\sqrt[4]{1-x}-1$
3.8	0	$2^{x}-1$	$\sqrt[4]{1-x} - 1$ $\ln(1 + \frac{x^2}{2})$
3.9	2	$2^{x}-4$	ln(3-x)
3.10	0	$\frac{2^x - 4}{sh^2x}$	$ln(2-\cos x)$
3.11	0	ln(1-x)	$\sin(2\arcsin x)$
3.12	0	$\sqrt[3]{1+x}-1$	$arctg\sqrt{x}$
3.13	0	$\sqrt[4]{1+x}-1$	$\arcsin(\sin^2 x)$
3.14	1	$\sqrt{\ln x}$	$e^{\sin x} - e^{\sin 1}$

1	2	3	4
3.15	0	$\sqrt[8]{1+2x}-1$	$tg^2\sqrt{x}$
3.16	0	$e^{x^2} - \cos x$	$\sqrt{1-\cos x}$
3.17	0	$2^{x^2}-1$	$ln(1-\sin x)$
3.18	0	$ln(2-e^x)$	$\sin(2\arcsin x)$
3.19	3	$3^{x} - 27$	sh(x-3)
3.20	0	1-chx	$2^{\ln(1-x)}-1$

4 Вычислить $\lim_{x \to a} f(x)$, используя принцип эквивалентности бесконечно малых:

	,		,
No	0	A	В
745	a	f(x)	f(x)
1	2	3	4
4.1	0	$\frac{e^x - 1}{\ln(1 + 6x)}$	$\frac{e^{2x} - 1}{(1 + 5x)^6 - 1}$
4.2	0	$\frac{e^{5x}-1}{\sin 4x}$	$\frac{arctg3x}{(1+4x)^4-1}$
4.3	1	$\frac{\ln(2-x)}{\arcsin(1-x)}$	$\frac{2^x - 2}{\sin(x - 1)}$
4.4	0	$\frac{\sin 4x - \sin 7x}{\ln(1+2x)}$	$\frac{\arcsin 2x}{e^{4x} - 1}$
4.5	3	$\frac{\ln(4-x)}{2^x-8}$	$\frac{\arcsin\sqrt{3-x}}{e^{3-x}-1}$
4.6	1	$\frac{\sqrt[3]{2-x}-1}{\ln(2-x)}$	$\frac{\arcsin\sqrt{1-x}}{\ln x}$
4.7	0	$\frac{\ln(1+4x)}{\sqrt{1+2x}-1}$	$\frac{\sin 2x - \sin 3x}{\ln(1+4x)}$
4.8	0	$\frac{arctg5x}{\ln(1+x)}$	$\frac{2^x - 1}{\sin 4x - \sin 6x}$
4.9	0	$\frac{tg\frac{x}{1+x^2}}{\arcsin^2\sqrt{x}}$	$\frac{3^x - 1}{\ln(1 - x)}$
4.10	0	$\frac{e^{2x}-1}{\sqrt{1+3x}-1}$	$\frac{(\arcsin\sqrt{x})^4}{tg^2 2x}$

1	2	3	4
4.11	0	$\frac{\sin x}{\ln(1+2x)}$	$\frac{\sqrt[3]{x^3 + 2x^6}}{\ln(1+5x)}$
4.12	0	$\frac{e^{3x}-1}{arctg2x}$	$\frac{2^{2x}-1}{\sin\frac{x}{2}}$
4.13	0	$\frac{e^{4x} - 1}{\sin 3x + \sin x}$	$\frac{(\arcsin x)^2}{tg^2 4x}$
4.14	2	$\frac{2^x - 4}{\ln(3 - x)}$	$\frac{\sqrt[3]{5-2x}-1}{\sin(x-2)}$
4.15	0	$\frac{\cos 6x - \cos 2x}{(1+3x^4)^5 - 1}$	$\frac{\ln(1+5x)}{\arcsin 3x}$
4.16	0	$\frac{e^{4x} - 1}{\arcsin 5x - x}$	$\frac{tg2x - \sin 4x}{\ln(1+8x)}$
4.17	0	$\frac{e^{3x}-1}{\sqrt{1+\sin 2x}-1}$	$\frac{\sin 4x - \sin 7x}{\ln(1+2x)}$
4.18	1	$\frac{\sin \pi x}{\sqrt{x} - 1}$	$\frac{\arcsin x}{arctgx}$
4.19	0	$\frac{\cos 6x - \cos 2x}{\ln(1+4x)}$	$\frac{\sin^2 \sqrt{x}}{tg \frac{x}{1+x}}$
4.20	1	$\frac{\ln(2-x)}{2^x-2}$	$\frac{\arcsin(1-x)}{\ln x}$

Решение типовых примеров

1.20 Определить порядок относительно x бесконечно малой при $x \to 0+$ функции:

A)
$$g(x) = \ln(1 + \sqrt{x})$$
; **B)** $g(x) = \arcsin(1 - \cos x)$

Решение.

A) Возьмем функцию $f(x) = x^{\frac{1}{2}}$. Поскольку

$$\lim_{x \to 0+} \frac{g(x)}{f(x)} = \lim_{x \to 0+} \frac{\ln(1+\sqrt{x})}{\sqrt{x}} = \left[\sqrt{x} = t\right] = \lim_{t \to 0+0} \frac{\ln(1+t)}{t} = 1,$$

то порядок бесконечно малой функции g(x) равен $\frac{1}{2}$.

B) Полагаем $f(x) = x^2$. Тогда

$$\lim_{x \to 0} \frac{g(x)}{f(x)} = \lim_{x \to 0} \frac{\arcsin(1 - \cos x)}{x^2} = \lim_{x \to 0} \frac{\arcsin(2\sin^2\frac{x}{2})}{x^2} = \begin{bmatrix} 2\sin^2\frac{x}{2} = t \\ x = 2\arcsin^2\frac{t}{\sqrt{2}} \end{bmatrix} = \lim_{t \to 0} \frac{\arcsin t^2}{4\arcsin^2\frac{t}{\sqrt{2}}} = \frac{1}{4}\lim_{t \to 0} \frac{\arcsin t^2}{t^2} \lim_{t \to 0} \frac{t^2}{\arcsin^2\frac{t}{\sqrt{2}}}.$$

Вычислим отдельно каждый из полученных пределов:

$$\lim_{t \to 0} \frac{\arcsin t^2}{t^2} = \left[u = t^2 \right] = \lim_{u \to 0} \frac{\arcsin u}{u} = \left[u = \sin x \right] = \lim_{x \to 0} \frac{x}{\sin x} = 1,$$

$$\lim_{t \to 0} \frac{t^2}{\arcsin^2 \frac{t}{\sqrt{2}}} = \lim_{t \to 0} \frac{\frac{t}{\sqrt{2}}}{\arcsin \frac{t}{\sqrt{2}}} \frac{\frac{t}{\sqrt{2}}}{\arcsin \frac{t}{\sqrt{2}}} \sqrt{2} = \sqrt{2}.$$

Последнее равенство получено с учетом предыдущих рассуждений. Итак, $\lim_{x\to 0}\frac{g(x)}{f(x)}=\frac{\sqrt{2}}{4}\,,\,\text{т.е. порядок }g(x)\text{ равен 2.}$

2.20 Для бесконечно малых при $x \rightarrow 0$ функций

$$f(x) = \arccos \frac{1-x}{1+x}, \ g(x) = \sqrt{1+\cos x}$$

выяснить какие из соотношений 1) – 6) верны.

Решение. Покажем, что:

$$\lim_{x \to 0} \frac{g(x)}{f(x)} = \lim_{x \to 0} \frac{\sqrt{1 - \cos x}}{\arccos \frac{1 - x}{1 + x}} = \lim_{x \to 0} \frac{x}{\arccos \frac{1 - x}{1 + x}} \lim_{x \to 0} \frac{\sqrt{1 - \cos x}}{x} = 0.$$

Действительно,

$$\lim_{x \to 0} \frac{\sqrt{1 - \cos x}}{x} = \lim_{x \to 0} \frac{\sqrt{2} \left| \sin \frac{x}{2} \right|}{\frac{x}{2}} = 2\sqrt{2},$$

$$\lim_{x \to 0} \frac{x}{\arccos \frac{1 - x}{1 + x}} = \left[\frac{\frac{1 - x}{1 + x} = \cos t}{1 + x} \right] = \lim_{t \to 0} \frac{\frac{1 - \cos t}{1 + \cos t}}{t} =$$

$$= \lim_{t \to 0} \frac{1}{1 + \cos t} \lim_{t \to 0} \frac{2\sin^2 \frac{t}{2}}{\left(\frac{t}{2}\right)^2} \frac{t}{4} = \frac{1}{2} \cdot 1 \cdot 0 = 0.$$

Из равенства $\lim_{x\to 0} \frac{g(x)}{f(x)} = 0$ согласно определению следует, что g(x) = o(f(x)), т.е. верно 4) и не выполняются соотношения 1), 3), 5), 6). Из 4) следует справедливость 2), так как из $g(x) = o(f(x)) \Rightarrow g(x) = O(f(x))$. Итак верны только соотношения 2) и 4).

3.20 Для бесконечно малой при $x \to 0$ функции f(x) найти такую $g(x) = cx^{\alpha}$, что: 1) f(x) = g(x), 2) $f(x) \sim g(x)$ при $x \to 0$:

A)
$$f(x) = 1 - chx$$

Решение. По определению $chx = \frac{e^x + e^{-x}}{2}$. Возьмем g(x) = x. Тогда

$$\lim_{x \to 0} \frac{g(x)}{f(x)} = \lim_{x \to 0} \frac{1 - chx}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1 - e^x + 1 - e^{-x}}{x} =$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{1 - e^x}{x} \lim_{x \to 0} \frac{e^x - 1}{x} \lim_{x \to 0} \frac{e^{-x} - 1}{-x} = -\frac{1}{2},$$

так как $\lim_{x\to 0} \frac{e^x-1}{x} = 1$. Отсюда следует, что f(x) = x при $x\to 0$. Учитывая равенство $\lim_{x\to 0} \frac{1-chx}{-\frac{1}{2}x} = 1$, получаем, что $f(x) \sim \left(-\frac{1}{2}\right)x$, при $x\to 0$.

4.20 Вычислите $\lim_{x\to 1} f(x)$, используя принцип эквивалентности бесконечно малых:

A)
$$f(x) = \frac{\ln(2-x)}{2^x - 2}$$
; **B)** $f(x) = \frac{\arcsin(x-1)}{\ln x}$.

Решение.

А) Применяя преобразование функции, получим

$$I = \lim_{x \to 1} \frac{\ln(2-x)}{2^x - 2} = \lim_{x \to 1} \frac{\ln(1 - (x-1))}{x - 1} \frac{x - 1}{2(2^{x-1} - 1)} = \frac{1}{2} \lim_{x \to 0} \frac{\ln(1 - (x-1))}{x - 1} \lim_{x \to 1} \frac{x - 1}{2^{x-1} - 1}.$$

Так как $\ln(1+t) \sim t$, $2^t - 1 \sim t \cdot \ln 2$ при $t \to 0$, то, согласно принципу эквивалентности бесконечно малых,

$$I = \frac{1}{2} \lim_{x \to 1} \frac{-(x-1)}{x-1} \lim_{x \to 1} \frac{x-1}{(x-1)\ln 2} = -\frac{1}{2\ln 2}.$$

В) Преобразовывая функцию, получим

$$I = \lim_{x \to 1} \frac{\arcsin(x-1)}{\ln x} = \lim_{x \to 1} \frac{\arcsin(x-1)}{x-1} \lim_{x \to 1} \frac{x-1}{\ln(1+(x-1))}.$$

Так как $\arcsin t \sim t$, $\ln(1+t) \sim t$ при $t \to 0$, то

$$I = \lim_{x \to 1} \frac{x-1}{x+1} \lim_{x \to 1} \frac{(x-1)}{(x-1)} = 1.$$